Statistical Atlas of the Knee

Team Members:
Murat Bilgel
Ceylan Tanes

Mentors:
Dr. Russell Taylor
Xin Kang (Ben)
Outline

- Project summary
- Background
 - What is a statistical atlas?
 - What are the applications?
 - Basic atlas construction process
- Goals, Motivation & Significance
- Technical Approach
- Deliverables
- Dependencies
- Management Plan
- Timeline
- Reading List
Project Summary

• Improve and automate the statistical atlas building pipeline developed by Gouthami Chintalapani at the Johns Hopkins University

• Build a statistical atlas of the knee using CT images
What is a statistical atlas?

- A **model** of an organ that captures the **inherent anatomical variability** in the given training population.

© Colorado School of Mines Division of Engineering
http://engineering.mines.edu/image/project/8-pelvic_coordinate_system1.jpg
Applications

• Monitoring disease progression
• Accounting for anatomical variation in large populations
• Surgical planning
• Post-operative evaluation
Basic Atlas Construction Process

1. **Model representation**
 - Template CT
 - Template Mesh

2. **Model alignment**
 - Model Creation and Correspondence (Registration)
 - Meshes

3. **Statistical analysis**
 - Principal Component Analysis
 - Basis Vectors
 - Mean Mesh

4. **Bootstrapping**

Shamelessly stolen from G. Chintalapani’s PhD dissertation
Step 1: Model Representation / Paramaterization

- Select template image
- Segment the anatomical region
- Labelled raw binary volume
- Mesh the labelled Region (tetsplit)
- Template Mesh Files

Anonymized, sorted training CT data

Preprocess the rest of the CT data

Raw, Binary, Downscaled Data

Segmentation is done manually with Analyze. It will be semi-automated with ITK-SNAP.
Step 2: Model Correspondence / Alignment

- Training volumes
- Template mesh
- MJOLNIR 3D-3D deformable registration
- Warped volume
Step 3: Statistical Analysis

1. Registered Mesh Instances
2. Compute The Mean Mesh
3. Perform PCA
4. Principal Components And Eigenvalues
Goals, Motivation & Significance

• making the segmentation semi- or fully-automated
 – Less prone to human error
 – Less time consuming

• automating the pipeline
 – More accessible to non-programmers

• build a statistical atlas of the human knee
 – Will be used to perform post-operative evaluation of ACL surgeries
Technical Approach - Milestones

1. Create a statistical atlas of the knee with the current pipeline (by the end of February)
 - Understand the components and limitations
2. Obtain a semi-automated segmentation method (by spring break)
 - Replace Analyze with ITK-SNAP
 - Evaluate the performance of the substitute
3. Automate the pipeline
 - Write a shell script to guide the user through the process
4. Estimate the position of the ACL tunnel from post-operative CT scans
 - Use image processing toolkit
Deliverables

• **Minimum**
 – Replace Analyze in the pipeline (used for preprocessing of images) with ITK-SNAP
 – Replace Analyze with MATLAB to perform other image processing tasks
 – Automate the pipeline developed by Gouthami Chintalapani
 – Build a statistical atlas of the bone structures of the knee

• **Expected**
 – Develop a semi-automated method for segmentation of the knee
 – Estimate bone tunnel locations using post-operative CT scans of ACL surgery patients
 – Prepare detailed documentation of the improved pipeline

• **Maximum**
 – Develop a fully automated method for segmentation of the knee
 – Develop a 3D-3D model-based registration algorithm
Dependencies

- Knee or leg CT image datasets
 - Post-operative CT scans (Hong Kong dataset provided by Ben)
 - Whole leg CT (Hopkins dataset, pending IRB approval)
- Computer for software development
 - Lab desktop: femur.compscidhcp.jhu.edu
- Software required for the atlas building pipeline
 - MATLAB, Analyze, Insight Toolkit (ITK), ITK-SNAP, Mjolnir, tetsplit, FANTASM
 - Gouthami’s scripts
- Linux account on the Stomach server
- Understanding of Gouthami’s atlas building pipeline
 - Written reference documentation
 - Gouthami’s PhD dissertation obtained from CS department
- Poster printing budget
 - For a 2x3 feet matte print at Digital Media Center: $32.55 (or $42.00 if paid using budget code)
- People
 - Ben and Dr. Taylor for continued help and guidance
Management Plan

• Regular weekly meetings with Ben
• After reaching each milestone, the remaining plan will be revised.
• Attend SARR meeting
• If IRB approval cannot be obtained for the Hopkins dataset, focus efforts on the Hong Kong dataset
• We will collaborate on each task and share responsibility equally.
<table>
<thead>
<tr>
<th>Task \ Week</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Proposal Presentation</td>
<td></td>
</tr>
<tr>
<td>Background Reading</td>
<td></td>
</tr>
<tr>
<td>Understand current pipeline</td>
<td></td>
</tr>
<tr>
<td>Run pipeline, obtain preliminary knee atlas</td>
<td></td>
</tr>
<tr>
<td>Automate segmentation</td>
<td></td>
</tr>
<tr>
<td>Automate the pipeline</td>
<td></td>
</tr>
<tr>
<td>Build knee atlas from CT images</td>
<td></td>
</tr>
<tr>
<td>Bone tunnel estimation</td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td></td>
</tr>
<tr>
<td>Prepare poster and submit for printing</td>
<td></td>
</tr>
</tbody>
</table>
Reading List

