Project Paper Seminar

Jonathan Satria
March 3, 2011
Quickstart Project Overview

- Improve system workflow in OR
- Mobile surgical console through iPad
- Implements cisst library and ICE
- Communicates with surgical peripherals
Paper Selection & Relevance

- **Functionality**

 Remote display solutions for mobile cloud computing

- **Usability**

 Lost in Menuspace: User Interactions with Complex Medical Devices
Functionality Paper
Background

- Mobile devices as display solutions
- Participate in cloud network
Problems

- Unique set of challenges created:
 1. Battery Lifetime
 2. Network bandwidth considerations
 3. Network latency considerations
Battery Lifetime

- Rate limiting factor
- Improve battery by offloading applications
- New concerns with battery consumption by network card

Solutions:
- Cycle sleep/idle states
- Find balance of application offloading and network usage
Network bandwidth considerations

- Video streaming requires high throughput over wireless network
- Application definition
- Downstream and upstream events
- Solutions:
 - Codec
 - Data peak reductions
 - User input bundling
Network latency considerations

- Evaluation of user expectations with regards to immediacy

- Solutions:
 - Cloudlets - bring devices closer together
 - Predict potential display updates
Implications

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Importance</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Lifetime Consumption</td>
<td>High</td>
<td>Length of surgery</td>
</tr>
<tr>
<td>Network Bandwidth</td>
<td>Low</td>
<td>Simple user inputs</td>
</tr>
<tr>
<td>Interaction Latency</td>
<td>Medium</td>
<td>Require quick response</td>
</tr>
</tbody>
</table>
Critique

- Can’t really critique… but
- Paper does not present much empirical evidence
- No sense of criticality of these challenges
Paper Selection & Relevance

- **Functionality**

 Remote display solutions for mobile cloud computing

- **Usability**

 Lost in Menuspace: User Interactions with Complex Medical Devices
Usability Paper Background

- Case study of a programmable infusion device
- Programmable Infusion pumps can deliver short-acting drugs at precise time
Experiment

- 14 Anesthesiologists, 26 Nurses
- Practitioner experience and pump experience
- Design program schematic
- Complete 5 tasks
- Measured Goal Directed Keystrokes (GDK)
Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Check a running dose of the drug dopamine (a premix concentration of 400 milligrams in 250 milliliters) that is set to run at 3 micrograms/kilogram/minute for a 75 kilogram patient.</td>
</tr>
<tr>
<td>2</td>
<td>Change the same dopamine infusion to a rate of 2 micrograms/kilogram/minute.</td>
</tr>
<tr>
<td>3</td>
<td>Set up and run a second powered down pump to deliver 1 liter of intravenous fluid over 8 hours.</td>
</tr>
<tr>
<td>4</td>
<td>Change the pump from scenario 3 to now deliver dopamine (400 milligrams/250 milliliters) at 3 micrograms/kilogram/minute in a 65 kilogram patient.</td>
</tr>
<tr>
<td>5</td>
<td>Change the same pump to deliver a premix of the drug nesiritide at a rate of 1 microgram/kilogram/minute (a higher than normal dose).</td>
</tr>
</tbody>
</table>

Copyright © 2004 Cognitive Technologies Laboratory. All rights reserved.
Data

<table>
<thead>
<tr>
<th>Subj</th>
<th>Exper (pract)</th>
<th>Exper (pump)</th>
<th>%GDK Task 1</th>
<th>%GDK Task 2</th>
<th>%GDK Task 3</th>
<th>%GDK Task 4</th>
<th>Mean %GDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>25</td>
<td>71.4</td>
<td>41.5</td>
<td>81.8</td>
<td>54.925</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>33.3</td>
<td>100</td>
<td>69.2</td>
<td>93.3</td>
<td>73.95</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>53.6</td>
<td>71.4</td>
<td>91.2</td>
<td>88.9</td>
<td>76.275</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>40</td>
<td>100</td>
<td>86.5</td>
<td>93.3</td>
<td>79.95</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>3</td>
<td>46.5</td>
<td>73.3</td>
<td>90.6</td>
<td>97</td>
<td>76.85</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>39.1</td>
<td>66.7</td>
<td>94.7</td>
<td>41.3</td>
<td>60.45</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>3</td>
<td>55.6</td>
<td>93.8</td>
<td>100</td>
<td>83.1</td>
<td>83.125</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>3</td>
<td>40</td>
<td>100</td>
<td>100</td>
<td>96.3</td>
<td>84.075</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>5</td>
<td>35.3</td>
<td>72.7</td>
<td>92.9</td>
<td>74.4</td>
<td>68.825</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>3</td>
<td>72.7</td>
<td>9032.6</td>
<td>90.3</td>
<td>71.4</td>
<td>94.375</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>4</td>
<td>25</td>
<td>100</td>
<td>90</td>
<td>88.9</td>
<td>75.975</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>5</td>
<td>100</td>
<td>87.5</td>
<td>90</td>
<td>100</td>
<td>78.8</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>5</td>
<td>61.5</td>
<td>83.3</td>
<td>81.8</td>
<td>88.6</td>
<td>69.175</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>2</td>
<td>7.6</td>
<td>100</td>
<td>100</td>
<td>69.1</td>
<td></td>
</tr>
</tbody>
</table>

mean 5.07 3.5
Results and Conclusion

- No correlation between years as a practitioner/experience with pump and %GDK
- Users are getting lost in “menuspace”
- GDK not an entirely accurate means of measuring proficiency
Critique

- Sample criteria factors needs to be evaluated (e.g. age, familiarity, etc.)
- GDK not a good measure
- Small sample size
Implications

- Shows the breakdown in using cursor and button input
- User needs to be aware of the navigation hierarchy/structure
Questions?