Paper Presentation:
An integrated system for planning, navigation and robotic assistance for skull base surgery

Zihan Chen
05-03-2011
Outline

• Paper Selection
• Motivation
• Materials and methods
 – Components
 – Registration & Calibration
 – Virtual fixture implementation
• Experiments and Results
 – Phantom
 – Cadaver
• Conclusion
• Relation to our project
• Question & Answer
Paper Selection

• **Title**: An integrated system for planning, navigation and robotic assistance for skull base surgery

• **Authors**: Tian Xia, Clint Baird, George Jallo, Kathryn Hayes, Nobuyuki Nakajima, Nobuhiko Hata, Peter Kazanzides

• **Journal**: THE INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY

• **Time**: September 2008

• **Reason**: The platform (where we start our work)
Motivation

- Image-guided surgery
- Limit:
 - Fatigue & dexterity
 - Cannot prevent surgical error
- Cooperatively controlled robot
- Image guidance
- Virtual fixture
Major Components

• NeuroMate robot
 – An Image-guided robotic system for stereotactic procedures in neurosurgery

• StealthStation navigation system
 – Navigation system

• 3D Slicer
 – Visualization (Can display virtual fixture)
 – Define virtual fixture
 – Postoperative analysis
NeuroMate & StealthStation

3D Slicer

Major Components

Registration and calibration

Virtual Fixture

- six-sided convex hull (one side open)
- 3 regions design
 - Safe zone (Free)
 - Boundary zone (Restricted)
 - Forbidden zone (No)
- Control law
Virtual Fixture (cont’d)

- Control law

\[\dot{q} = J^{-1}(q) \times K(d) \times G(f) \times \begin{bmatrix} F_w \\ T_w \end{bmatrix} \]

- \(J^{-1} \) inverse Jacobian
- \(G(f) \): admittance gains
 - High speed for coarse positioning
 - Fine motion control
 - Exponential functions

- \(K(d) \): motion constraints
 - Safe Zone
 - Identity Matrix
 - Boundary Zone
 - Scale down (\(K(d) \))
 - Forbidden Zone
 - Only leaving motion is OK
Experiment: Phantom

• Plastic skull phantom + fixture + foam block (target)
• Six foam blocks
 – 3 same registrations
 – Last 3 different location/orientation
• Use calipers for measurement
• Error: $|E_p| + E_d/2$
• SD1: Robot system repeatability
• SD2: Overall system performance

Experiment: Cadaver

- Bone surrounding the internal auditory canal (IAC)
- Both the left and right
- First trial failed

Experiment: Cadaver

- 3D-Slicer Transform virtual fixture to postoperative CT image
- Results
 - Overcut
 - Typically 1-2 mm
 - Max 3 mm

Conclusion & Future work

• Faster + Safer
• Placement error: 0.6 mm
• Dimensional error: 0.6 mm
• Overcut:
 – Typical: 1-2mm
 – Max: 3mm

• Future work
 – Virtual fixture model
 – VF control algorithm
 – Tools for postoperative assessment
Thank You