Introduction

During this project, we

- Obtained CBCT images before, during and after robot-assisted surgical procedure
- Achieved sub-millimeter accuracy in registering CBCT images to pre-opera CT, tracker and robot
- Performed target-pointing and foam ablation experiments with effective virtual fixture (VF) constraint and real-time visualization

We aim at introducing intra-operative imaging as update to image-guided robotics, helping it better provide precise mechanical assistance and safety constraints.

Outcomes and Results

CBCT-CT Registration
Mean FRE: ~0.8 mm
Mean TRE: ~1mm

CBCT-Tracker Registration
Mean FRE: 0.5–0.8 mm
Mean TRE: <1mm

Tracker-Robot Registration
Pivot calibration error:
- Robot end effector: 0.43mm
- Robot rigid body: 0.64mm
Registration error: 0.65 mm

The Problem

- Neurosurgery, especially skull base surgery, requires high accuracy in localizing anatomical structures.
- Previous robot system starts with small pre-opera registration error but ends with cut out of VF in cadaver studies, and navigates only on pre-opera CT images.

The Solution

Intra-operative Cone Beam CT imaging is integrated into current skull base robot system to update registration, deformation, and ultimately virtual fixture.

Future Work

- Cadaver experiment
- Deformable CT-CBCT registration

Lessons Learned

- Accuracy control and system integration are of much important

Credits

- Hao: CBCT-CT and CBCT-Tracker registration
- Zihan: Tracker-Robot registration and visualization

Support by and Acknowledgements

- Many thanks to Dr. Siewerdsen and Dr. Kazanzides for supervision
- Special thanks to Dr. Chung for work on robot, Dr. Lee for model generation and Dr. Sebastian for CBCT scans
- Special thanks to Dr. Russ Taylor for this opportunity