Retina Project Overview

• Registration
 – Preoperative images to intraoperative images
 – Overlay of landmarks on live microscopic feed

• Requirements
 – Image Matching/Tracking
Paper Selection and Relevance

• SURF – algorithm for feature detection and descriptor generation

Background

• Computer Vision
 – Object recognition
 – Video tracking
• Finding point correspondence between 2 images
 – Feature detection, feature descriptor, feature matching
 – SIFT (Scale Invariant Feature Transform)
 • Slow for live video implementation
 • “Predecessor” / Influence
 • Hessian (location), Laplacian (scale) – approx via Difference of Gaussians
Problems

- Feature Detector
 - Repeatability
 - Robust
 - Distinct
 - Scale, rotation invariant

- Feature Descriptor
 - Robust to noise,
 detection displacement,
 geometric/photometric
deformations
 - Fewer dimensions = faster, but less distinct

SURF Theory: Feature Detector

- Feature Detector
 - Corners, blobs, T-junction
 - Integral Images
 - Hessian-matrix (choose where determinant is maximum)
 - Approximation
 - “Fast Hessian detector”
 - Small loss in repeatability

Given a point \(\mathbf{x} = (x, y) \) in an image \(I \), the Hessian matrix \(\mathcal{H}(\mathbf{x}, \sigma) \) in \(\mathbf{x} \) at scale \(\sigma \) is defined as follows

\[
\mathcal{H}(\mathbf{x}, \sigma) = \begin{bmatrix}
L_{xx}(\mathbf{x}, \sigma) & L_{xy}(\mathbf{x}, \sigma) \\
L_{xy}(\mathbf{x}, \sigma) & L_{yy}(\mathbf{x}, \sigma)
\end{bmatrix},
\]

(2)

where \(L_{xx}(\mathbf{x}, \sigma) \) is the convolution of the Gaussian second order derivative \(\frac{\partial^2}{\partial x^2} g(\sigma) \) with the image \(I \) in point \(\mathbf{x} \), and similarly for \(L_{xy}(\mathbf{x}, \sigma) \) and \(L_{yy}(\mathbf{x}, \sigma) \).

Fig. 2. Left to right: the (discretised and cropped) Gaussian second order partial derivative in \(y \) \((L_{yy}) \) and \(xy \) direction \((L_{xy}) \), respectively; our approximation for the second order Gaussian partial derivative in \(y \) \((D_{yy}) \) and \(xy \) direction \((D_{xy}) \). The grey regions are equal to zero.

Images and formulas taken from SURF paper.
SURF Theory: Feature Detector

- **Feature Detector**
 - Scale Invariant

 ![Scale Invariant Image](image)

 Fig. 4. Instead of iteratively reducing the image size (left), the use of integral images allows the up-scaling of the filter at constant cost (right).

SURF Theory: Feature Descriptor

- **Feature Descriptor**
 - Describing smaller-scale features within interest neighborhood
 - Closely mimics SIFT
 - Rotation invariant
 - Haar Wavelet Responses

 ![Rotation Invariant Image](image)

 Fig. 10. Orientation assignment: A sliding orientation window of size \(\ell \) detects the dominant orientation of the Gaussian-weighted Haar wavelet responses at every sample point within a circular neighbourhood around the interest point.
SURF Theory: Feature Descriptor

- Feature Descriptor
 - Describing smaller-scale features within interest neighborhood
 - Closely mimics SIFT
 - Rotation invariant
 - Haar Wavelet Responses

SURF Theory: Feature Matching

- Feature Matching
 - Sign of Laplacian (trace of Hessian)

Images and formulas taken from SURF paper
Experiment

- Comparison (speed, repeatability, reliability)
- Camera calibration for 3D reconstruction
- Object recognition experiment

Key Result – Feature Detection, Speed

<table>
<thead>
<tr>
<th>detector</th>
<th>threshold</th>
<th>nb of points</th>
<th>comp. time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FH-15</td>
<td>60000</td>
<td>1813</td>
<td>160</td>
</tr>
<tr>
<td>FH-9</td>
<td>50000</td>
<td>1411</td>
<td>70</td>
</tr>
<tr>
<td>Hessian-Laplace</td>
<td>1000</td>
<td>1979</td>
<td>700</td>
</tr>
<tr>
<td>Harris-Laplace</td>
<td>2500</td>
<td>1664</td>
<td>2100</td>
</tr>
<tr>
<td>DoG</td>
<td>default</td>
<td>1520</td>
<td>400</td>
</tr>
</tbody>
</table>

Table 1
Thresholds, number of detected points and calculation time for the detectors in our comparison. (First image of Graffiti scene, 800 × 640)
Key Result – Feature Detection, Repeatability

Images and formulas taken from SURF paper.

Key Result – Feature Descriptor

Recall precision for nearest-neighbor ratio matching.
Critique

Good
• Described previous related work/algorithm
• Extended SIRF/other related detector-descriptors
• Justification of theory
• Balanced Speed vs. Performance
• Relevance to other areas of research

Bad
• Faster, faster, faster → In-Depth Analysis of Performance?
• What ways is SURF better/worse than SIFT?
 – Need larger sample testing

Next Steps
• GPU Parallelization - Done
• Feature Descriptor : 64 vs. 128 elements
• Testing on image distortions
• Implications for image matching by comparing descriptors
• No color info used
Assessment / Relevance to Project

• Speed vs. Accuracy
 — Live tracking?
• Robustness for current data
 — Scale invariant
• Customizable – Hessian threshold, description size
• Feature matching?

Conclusion

• Balance between Speed vs. accuracy
 — Approximation, reduction in operations
• Valid replacement for SIFT
Questions?