Robotically Assisted Cochlear Imaging and Access

Berk GONENC

• Team #1
• Members: Ehsan Azimi, Berk Gonenc
• Mentors: R. Taylor, I. Iordachita, J. Kang
• Clinical Mentors: J. Niparko, W. Chien
Outline

- Background & Specific Aims
- Article Choice
- Technical Summary
- Experiments & Results
- Conclusion & Future Work
- Analysis
Background & Specific Aims

Outer Ear → Middle Ear → Inner Ear

External system
- Microphone
- Speech processor
- Transmitter

Internal system
- Receiver/stimulator
- Electrode array

Surgery required!

Source: www.cochlear.com
What is happening inside?

- **Insertion Technique**: Advance Off-Stylet
- **Flexible curved electrode array** (1 mm diameter) is advanced into 15-20 mm long channel in 3 steps:

 a. The whole electrode is inserted until the white marker reaches cochleostomy site.

 b. The stylet is held stationary, electrode is deployed off the stylet. The electrode takes its naturally curved shape.

 c. After the ribs reach the cochleostomy site, the stylet is removed.

- **Location of these steps is very critical!**

Source: Thomas S. Rau et al, 2009
Clinical Goals

1. The electrode should travel in Scala-Tympani with **NO DAMAGE** to the basilar membrane.

2. The electrode should be located as **CLOSE TO MODIOLUS** as possible.

➢ For these, there is a critical location to begin off-stylet technique.

Source: www.utsouthwestern.edu

Source: www.medel.com
Outline

- Background & Specific Aims
- Article Choice
- Technical Summary
- Experiments & Results
- Conclusion & Future Work
- Analysis
Paper 1: "A manual insertion mechanism for percutaneous cochlear implantation"
Authors: Daniel Schurzig, Zachariah W. Smith, D. Caleb Rucker, Robert F. Labadie, Robert J. Webster III
Presented at: Design of Medical Devices Conference (DMD2010), April 13-15 2010, Minneapolis, MN, USA

Paper 2: "Insertion of electrode array using percutaneous cochlear implantation technique: a cadaveric study"
Authors: Ramya Balachandran, Jason E. Mitchell, Jack Noble, Daniel Schurzig, Gregoire Blachon, Theodore R. McRachan, Robert J. Webster, Benoit M. Dawant, J. Michael Fitzpatrick, Robert F. Labadie
Presented at: Medical Imaging 2011: Visualization, Image-Guided Procedures, and Modeling, February 13 2011, Lake Buena Vista, FL, USA
Outline

- Background & Specific Aims
- Article Choice
- Technical Summary
- Experiments & Results
- Conclusion & Future Work
- Analysis
Our project focuses on problems related to this part. This part takes about 171 minutes!!!

Risk of damage

Source: Ramya Balachandran et al., 2011
Percutaneous Cochlear Implantation (PCI)

- Mastoidectomy is removed.
- A linear path from skull to cochlea is drilled by avoiding facial nerve and Chorda Tympani.
- Much quicker, less invasive.
- Submilimetric accuracy is required for implementation!
Electrode Insertion

Drilled a linear path into cochlea

Obtained a channel that is 35 mm deep and 1.5 mm in diameter.

Very limited access: Standard manual deployment tools cannot be used!

We have the same problem in our system 😊
Technical Summary

- **A Force Sensing Automated Insertion Tool for Cochlear Electrode Implantation**

 Daniel Schurzig, Robert F. Labadie, Andreas Hussong, Thomas S. Rau, Robert J. Webster

 IEEE International Conference on Robotics and Automation, May 2010

Problem: Regulatory-related challenges in applying the system to human use.

Remedy: Replace the automated tool with a manual tool 😊

Important lesson for us: A fully automatic system may not always be good.
Manual PCI Insertion Tool Design

- Used concentric tube approach to enter 1.5 mm channel easily.
- Very compact mechanical pencil-like actuation is obtained.

Source: Daniel Schurzig et al., 2011
Using Tweezers

Using PCI Tool

- Adjust screw to define straight travel depth
- Retract guiding tube
- Load the implant
- Fully advance guiding tube forward
- Insertion is completed

Source: Daniel Schurzig et al., 2011
Technical Summary

Surgical Workflow

1. Pre-operative CT scan
 - Automatically segment significant structures
 - Generate safe drill trajectory (3 min. with Intel Xeon 2.4 GHz dual quad-core 64 bit 10 GB RAM)
 - Implant 3 fiducial markers on the bone surrounding the ear (8 min.)

2. Intra-operative CT scan (5 min.)
 - Rigid registration and intra-operative planning (4 min.)
 - Fabricate custom surgical guide and attach it (8 min.)

3. Drilling and electrode insertion

Technical Summary

Outline

- Background & Specific Aims
- Article Choice
- Technical Summary
- Experiments & Results
- Conclusion & Future Work
- Analysis
Experiments & Results

- Tests were done on 3 cadaveric bones.
- In all specimens, the drill reached the cochlea without damaging the facial nerve.
- In all specimens, the insertion was satisfactory based on the post-insertion CT scans.

Source: Ramya Balachandran et al., 2011
Outline

- Background & Specific Aims
- Article Choice
- Technical Summary
- Experiments & Results
- Conclusion & Future Work
- Analysis
Conclusion & Future Work

Conclusion

- The compact manual insertion tool served the ability to access through deep narrow holes. This enabled the PCI technique.

- The presented PCI technique reduced average operation time from 171 minutes to 60 minutes.

- The cadaver study is the first reported study demonstrating the insertion of electrode array using PCI.

Future Work

- Sterilization of the device (most probably gas sterilization)

- Proceed rapidly to clinical use
Outline

- Background & Specific Aims
- Article Choice
- Technical Summary
- Experiments & Results
- Conclusion & Future Work
- Analysis
Analysis

Our project
- For improving traditional cochlear implant surgery.
- Use intra-operative OCT images.
- No mounting on the patient.
- Pre-curved electrode is inserted via Advance Off-Stylet technique.
- Limited cochlea access ports, and thus seeking compact insertion tools.

Their project
- For improving percutaneous cochlear implant surgery.
- Use pre and intra-operative CT images.
- The tool is rigidly fixed to the bone of the patient.
- Pre-curved electrode is inserted via Advance Off-Stylet technique.
- Limited cochlea access ports, and thus seeking compact insertion tools.
Analysis

Strengths

- The problem statement is strong.
- The improvement in operation-time is significant.
- Surgical workflow is presented in detail, which can be beneficial for our project since we need to have one as well.
- Mechanism design criteria, restrictions and requirements are well stated, which has shaped and will guide our designs.

Weaknesses

- The mechanism functionality and drawings are not clear.
- It is not clear how the tool is removed after the insertion is completed. (This is why we hadn’t used concentric tube approach for our design.)
- Verification of the electrode placement in cadaver experiments is not clear. (based on the presented OCT images.)
Daniel Schurzig, Zachariah W. Smith, D. Caleb Rucker, Robert F. Labadie, Robert J. Webster III, A manual insertion mechanism for percutaneous cochlear implantation, Design of Medical Devices Conference (DMD2010), April 13-15 2010, Minneapolis, MN, USA

