Prior Models on Coronary Arteries to Support Coronary Artery Detection

Paper Review Presentation

Team Members: Mehmet Akif Gulsun
Mentor: Gareth Funka-Lea, Princeton

Gulsun, 2012
Coronary Artery Disease
- 53% of cardiovascular diseases. Leading cause of death in the United States!
- Coronary detection in CTA is important for diagnosis, treatment and monitoring.

Problem: Coronary detection from CTA is difficult due to
- their high anatomical variability
- pathologies and imaging artifacts

Project Goal: Build prior coronary models to
- improve detection
- allow for statistical analysis
Technical Approach

50 CTA coronaries

M1 Alignment

M2 Statistics on Territories

M3 Coronary Tree Matching

M4 Coronary Tree

M5 Average Tree

Gulsun, 2012
“An airway tree-shape model for geodesic airway branch labeling”

Relevance to my project:

Airway Branch Matching \[\leftrightarrow\] Geodesic Deformation \[\leftrightarrow\] Geodesic Deformation \[\leftrightarrow\] Coronary Average Tree

QED: Quotient Euclidean Distance

Feragen et. al.
Problem Statement

- Diseases related to airway properties
 - Chronic Obstructive Pulmonary Disease
- Monitor disease progression
 - variation of airway properties at specific sites
 - need for airway tree correspondence between two subjects

- Airway tree shapes for correspondence
 - extracted in CT scans
- Difficult problem due to
 - spurious or missing branches
 - anatomical variability

Feragen et. al.

McGill University
Methods using either topology or branch shape

- Maximal cliques on association graphs
 - Only topology, NP-hard

- Recursive labeling
 - Prone to topological order of branches

- Path matching
 - Loses topological information, no branch matching

- Method proposed in this paper
 - Based on both topology and branch shape: main contribution
 - Continuous geodesic deformation

Feragen et. al.
Method – Geometric Space

\[f : E \rightarrow \mathbb{R}^{3n} \]

Tree-shape space

\[X = \prod_{e \in E} \mathbb{R}^{3n} \]

Quotient Space

\[\tilde{X} \]

Project Overview
Paper Background
Method
Experiments
Critiques

Gulsun, 2012
Method – Quotient Euclidean Distance

- Euclidean distance in the quotient space
 - L_2 norm between nonidentical trees
 - 0 between identical trees

- Geodesic path: a series of internal structural changes with minimum cost

$\text{dist1} + \text{dist2} < \text{dist3}!$
Method – Quotient Euclidean Distance

- Unique Geodesic Path with L2 norm metric
 ➢ Well suited for registration and statistics

- L1 norm ⇒ Same geodesic distance as TED (Tree Edit Distance)
Method – Application to airways

- Airway tree shapes are in 3D and
 - branch orders unknown
- Consider all orders
 - computationally expensive
 - match each lobe separately

- Implementation: consider all possible paths and take the shortest path
 - too many paths!
 - put an upper bound on internal changes

- Propagate branch labels through deformation
- Majority vote
 - propagated labels from multiple trees
Experiments

- Airway centerlines from 20 EXTRACT’09 segmentation challenge data
- Labels by trained image analyst
- 6 landmarks sampled along each branch, short ones were pruned
- Each tree was normalized by the size of LMB branch
- 6 main branches were fixed and method was run on 5 lobar trees separately
- Branches down to 6-7 generations considered
- Only one internal topological transition was allowed in the deformation
- Airway trees were matched with a leave-one-out fashion
- Branches with less than 55% consensus or 4 votes were discarded
Results

- Average labeling success rate: 83%
- Authors opinion: Success rate was high taking the variation into account
- Comparison to other methods (with 97%, %90 success rates) was not possible because of different datasets used

<table>
<thead>
<tr>
<th>CASE</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>% correct</td>
<td>75</td>
<td>88.2</td>
<td>92.9</td>
<td>80</td>
<td>77.8</td>
<td>86.7</td>
<td>88.9</td>
<td>94.4</td>
<td>66.7</td>
<td>89.5</td>
</tr>
<tr>
<td># correct</td>
<td>12</td>
<td>15</td>
<td>13</td>
<td>12</td>
<td>14</td>
<td>13</td>
<td>16</td>
<td>17</td>
<td>14</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CASE</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>% correct</td>
<td>90</td>
<td>76.5</td>
<td>88.9</td>
<td>100</td>
<td>83.3</td>
<td>78.9</td>
<td>66.7</td>
<td>80</td>
<td>30</td>
<td>76.5</td>
</tr>
<tr>
<td># correct</td>
<td>18</td>
<td>13</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>12</td>
<td>8</td>
<td>4</td>
<td>13</td>
</tr>
</tbody>
</table>
Critique - Cons

- Authors claim: 83% is high given the large variation in topology
- Plot supporting their claim:

- But they run their method down to 6 generations
 ➢ a similar plot for only down to 6 generations would be more supportive!
- Authors statement: airways trees may have missing branches

Mislabeling when branches missing

My implementation with branch partitioning

Gulsun, 2012
Critique - Cons

- Airway trees were normalized using LMB branch length
- No comment on the variability of LMB branch relative to airway tree
 ➢ does larger airway trees always have longer LMB branch?
- In my project, coronary trees normalized relative to heart size
 ➢ acceptable
- Were fixed branches included in the results?
 - if so, what are the results for only lobes?

- Authors claim: 30% accuracy in CASE39 was due to missing upper lobe
 - each lobe was matched separately
 - why other lobes were affected?

- no clue about runtime

- comparison to TED method missing
 - previously applied to cerebral vessel matching by Tang, et. al.
Critique - Pros

- A novel method that uses both topology and branch geometry
- Unique geodesic metric
 - suitable for statistical analysis
- Majority vote labeling: simple but effective idea
- Additional attributes can be used
- Presentation of QED to a broader community
- Similar problem: geodesic deformation between trees
 - 2D coronary centerlines
 - more resources for handling missing branches
- Prune small branches
- Fix certain main branches, e.g., LAD and CX branches

- Future work: comparison of TED and QED for branch matching
References

