Intraoperative Visualization of Anatomical Targets in Retinal Surgery
Project Background

Assessment of Intraoperative OCT Imaging in a Simulated Micro-Surgical Task

Main Goals:
● Assess efficacy of intraoperative OCT for locating epiretinal membranes
● Improve the user interface/GUI
● Implement smart OCT processing & color enhancements

Important feature of system
● Visual tracking and annotation
Intraoperative Visualization of Anatomical Targets in Retinal Surgery

Ioana N. Fleming, Sandrine Voros, Balazs Vagvolgyi, Zach Pezzementi, Dr. Jim Handa, Russell Taylor, Gregory D. Hager

- Example of highlighting/annotation of features on video for intraoperative use
- Conducted subject experiment to test variation in accuracy & targeting time
Summary

Paper presents a framework for improving retinal microsurgery outcomes by

- registering preoperative diagnostic images (OCT) with the intraoperative video data
- tracking anatomical features localized thanks to the registration phase

The enhanced information is displayed during the intervention using a 3D visualization system.
Background

Typical set up for surgery

- Usually involves direct visualization
- OCT used to image pre-operatively
- Replace direct visualization with annotated video feed
Some difficulties

- Resolution & dynamic range of displays/cameras sufficient
- Registration without fiducials
- Static registration between preoperative and intraoperative imagery, of an anatomical target that is manipulated
- Retina is mobile during procedure
Methodology

● Optical Coherence Tomography (OCT) for pre-operative images
 ○ Provides information on depth of tissue layers
 ○ Paired with a low quality fundus image known as the targeting image

Flemming et al.
Methodology cont.

● High-resolution fundus image
 ○ Photograph of the interior surface of the eye made with ophthalmoscope
 ○ Direct observation of microcirculation, blood vessels used as landmarks for registration

Flemming et al.
Methodology cont.

- Microscope view

Algorithm in a nutshell:

- OCT to target image alignment
- Register targeting image to pre-operative high resolution fundus image
- Register fundus image to microscope view
- Maintaining fundus microscope registration through visual target tracking
OCT to target image alignment

- Span and orientation of each OCT cross-section of retina known with respect to targeting image
- Adjust scale of OCT to fit corresponding representation in targeting image

Flemming et al.
Targeting image to fundus image registration

- Targeting image low resolution
 - low overlap
 - orientation and scale differences
 - illumination variation
 - physical changes in the scene

- Stewart's Dual Bootstrap ICP algorithm used
Stewart's Dual Bootstrap ICP algorithm

- Feature based approach: uses blood vessel branching and cross-over points
- Extracts and matches keypoints to generate initial similarity transform estimates, accurate over bootstrap region
- In each region, iteratively:
 - Refine transform estimate using region constraints
 - Expand bootstrap region
 - Test to see if higher order transformation model can be used
 - Terminate when region covers overlap between images
Flemming et al.
- Register small patch of retina visible through microscope with complete fundus image
- Also uses Stewart's dual bootstrap ICP algorithm
- Anatomical targets registered tracked in stereo
 - Uses region-based tracking algorithm
 - Based on direct image matching of selected regions
 - Minimizes sum of squares differences between ground truth region and a candidate region

Fundus image to microscope registration
Final microscopic view with target overlay is displayed in 3D using polarizing screen

System set up

Flemming et al.
● Retinal phantom
 ○ Small region of high-resolution fundus image printed on glossy photo paper
 ○ Placed under surgical microscope as intra-operative reference image
 ○ Restricted target motion to planar rigid body motion
 ○ Single target was tracked

● Experimental design
 ○ Anatomical target defined on initial microscopic view, considered ground truth
 ○ Multiple attempts to reach target with microsurgery tool
 ○ Goals
 ■ Asses accuracy of tracker during series of motions
 ■ Compare target reach time with and without overlay
 ■ Compare accuracy with and without overlay
- To assess precision tracked one target and recorded 9 images at different positions & orientations of the reference image

- Ground truth and tracked target were projected onto same image, their distances were computed to obtain error of tracking algorithm

- To compare gesture accuracy and targeting time authors performed 6 targeting trials with overlay and 6 without it
 - Collected one microscope view at beginning and end of each trial
Registration of phantom image with fundus image

Target reaching without overlay (left) and with overlay (right)
Result

- Tracker error of 3.86 ± 2.25 pixels
 - Assuming diameter of eye between 23.5 - 25 mm estimate error between 0.04 - 0.044 mm
- The targeting time 8.59 ± 4.8 s without overlay & 8.26 ± 2.13 s with the overlay
- Precision in identifying target
 - Without overlay: 50.83 ± 54.57 pixels, 0.527 ± 0.583 mm
 - With overlay: 0.087 ± 0.096 mm
- Tracking processing speed of 31-33 FPS using chorioallantoic membrane (CAM) of 12 days old chicken embryo
Assessment

Positive points:
- Significant increase in targeting accuracy
- Good example of video annotation for retinal surgery

Shortcomings:
- Small sample size composed exclusively of authors
- Print-out phantom not deformable unlike real retina
- Tracking algorithm supports only single target tracking, occlusion of which affects its performance
- Could use better explanation of Stewart's algorithm and tracking algorithm
- What if retina manipulation/ membrane peeling changes location of targets?
Future Work

- More extensive usability study
- Adapt tracking algorithm to detect occlusions and support multiple targets
- Replace polarized screen with head-mounted display
- Incorporate to hand-guided robot like Steady Hand Robot
Thank you!

Questions?