Guidance for Skullbase Surgery

Team 10: Allen Zhu | Paper Seminar
Mentors: Peter Kazanzides, Muyinatu Bell
Project Statement

Our Goal:
Improve accuracy using intra-operative sensing/imaging to protect critical structures during drilling, particularly in children

Image source: Dr. Kazanzides
Seminar Topic:
An integrated system for planning, navigation and robotic assistance for skull base surgery

Problem Statement

• Neurosurgery is limited by human dexterity and performance
• A very high level of surgical skill is required in skull base surgeries
• Vascular and neurological structures deep within the skull must be avoided
• Need an robotic assisted system to increase the safety and efficiency of these procedures

Xia et al. An integrated system for planning, navigation and robotic assistance for skull base surgery
Goal

Examine the

feasibility and accuracy of an integrated robotic system for navigation, assistance, and control in skull base surgery.
Key Results

• Accuracy of individual robot and navigational subsystems are accurate to less than 1mm
• Phantom studies of the integrated system demonstrate accuracies of roughly 1mm
• However, cadaver studies show that overcut outside of virtual fixture region can be up to 3mm
Background: Components

• Modified NeuroMate robot with force sensor
• StealthStation Navigation System
• 3D Slicer open-source software
Background: System Overview

Xia et al. An integrated system for planning, navigation and robotic assistance for skull base surgery
Methods: Registration and Calibration

• CT image data read by Slicer and StealthStation
• Different coordinate system for both
• Fixed transformation using registration methods from StealthStation

Xia et al. An integrated system for planning, navigation and robotic assistance for skull base surgery
Methods: Registration and Calibration

- Fiducials placed before CT scan
- Tracked tool to touch each fiducial
- Registration calculated from two sets of points

Xia et al. An integrated system for planning, navigation and robotic assistance for skull base surgery
Methods: Registration and Calibration

- Cutter tip position unknown
- Simple translation from known robot end-effector and robot rigid body
- Simultaneous pivot calibration on tip

Xia et al. An integrated system for planning, navigation and robotic assistance for skull base surgery
Methods: Registration and Calibration

- Cutter tip is moved to six different locations
- Points taken in robot world frame and Stealth frame
- Registration of two point sets
Methods: Virtual Fixture Definition

- Virtual fixture is defined in 3D slicer.
- Can be implemented in robot frame (does not keep track of head movement).
- Can be implemented in navigational frame (requires line of sight to camera).
Methods: Virtual Fixture Definition

- Virtual fixture has three regions:
 - Safe zone
 - Boundary zone (with distance D)
 - Forbidden zone

Xia et al. An integrated system for planning, navigation and robotic assistance for skull base surgery
Methods: Virtual Fixture Definition

\[
\dot{q} = J^{-1}(q) \times K(d) \times G(f) \times \begin{bmatrix} F_w \\ T_w \end{bmatrix}
\]

- Admittance control law (determines goal velocity)
- Jacobian inverse resolved at cutter tip converts Cartesian velocities to joint velocities
- \(F_w\) and \(T_w\) are measured force and torque in robot frame
- \(G\) is admittance gain as nonlinear function of force
- \(K\) is scaling factor dependent on distance from forbidden zone
Methods: Virtual Fixture Definition

- C is coordinates of the cutter tip
- P is a point on a virtual fixture plane
- N is the unit normal to the plane
- If d_i is negative, cutter tip is in forbidden zone

$$d_i = \frac{(C - P) \cdot N}{|N_i|}$$
Methods: Virtual Fixture Definition

\[\dot{q} = J^{-1}(q) \times K(d) \times G(f) \times \begin{bmatrix} F_w \\ T_w \end{bmatrix} \]

- If in safe zone \(K(d) = 1 \)
- If in boundary zone scale by \(K(d) = d_i/D \) for smallest \(d_i \), if heading toward the forbidden zone, otherwise \(K(d) = 1 \)
- If in forbidden zone, only movement toward the safe zone is allowed

Xia et al. An integrated system for planning, navigation and robotic assistance for skull base surgery
Results: Subsystem Accuracies

- Test accuracy of robot and navigation systems
- Precisely machined aluminum plate with 13 divots (known accuracy 0.0127mm)
- Cutter tip guided into each divot
- Points recorded in robot and navigation frame
- Positions registered to known machined positions
- Fiducial registration error was **0.64mm for the robot** and **0.74mm for the navigation system**
Results: Phantom Experiments

- Plastic skull with embedded fixture for foam blocks
- After registration, box-shaped virtual fixture was defined with known distance between cut edges and block edges
Results: Phantom Experiments

- Used cutter tip to drill out box in foam block
- Calipers used to measured distance between edges
- Placement error: difference between expected center and cut center
- Dimensional error: difference between actual and planned cut dimensions
Results: Phantom Experiments

• Black is desired cut
• Purple represents placement error in x-axis
• Blue represents dimensional error in y-axis
• Total overcut = \[\text{abs(positional error)} + \frac{(\text{dimensional error})}{2} \]
Results: Phantom Experiments

<table>
<thead>
<tr>
<th>Foam</th>
<th>Placement X</th>
<th>Placement Y</th>
<th>Dimensional X</th>
<th>Dimensional Y</th>
<th>Dimensional Z</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.17</td>
<td>1.12</td>
<td>0.54</td>
<td>0.25</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.04</td>
<td>1.08</td>
<td>0.50</td>
<td>0.20</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.49</td>
<td>0.96</td>
<td>0.25</td>
<td>0.05</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>Mean1</td>
<td>0.23</td>
<td>1.05</td>
<td>0.43</td>
<td>0.17</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>SD1</td>
<td>0.23</td>
<td>0.09</td>
<td>0.16</td>
<td>0.10</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.49</td>
<td>0.96</td>
<td>0.25</td>
<td>0.05</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.28</td>
<td>1.11</td>
<td>0.70</td>
<td>0.33</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-0.44</td>
<td>0.79</td>
<td>0.99</td>
<td>0.35</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.04</td>
<td>-0.62</td>
<td>0.54</td>
<td>0.10</td>
<td>1.85</td>
<td></td>
</tr>
<tr>
<td>Mean2</td>
<td>0.59</td>
<td>0.56</td>
<td>0.62</td>
<td>0.21</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>SD2</td>
<td>0.76</td>
<td>0.80</td>
<td>0.31</td>
<td>0.15</td>
<td>0.56</td>
<td></td>
</tr>
</tbody>
</table>

- Mean placement error = 0.6mm
- Mean dimensional error = 0.6mm
- Total overcut error = 0.9mm
Results: Cadaver Experiments

• Suboccipital approach, such as for resection of acoustic neuroma on left/right sides of three cadavers
• Virtual fixtures created from CT scan with 0.5mm slice spacing
• Registrations only accepted if less than 1mm for CT to Stealth and less than 0.5mm for Stealth to robot
• Post and preoperative images taken to examine over and undercut
Results: Cadaver Experiments

Xia et al. An integrated system for planning, navigation and robotic assistance for skull base surgery
Results: Cadaver Experiments

- **Average 1-2mm overcut**, with some regions of up to **3mm overcut**

Xia et al. An integrated system for planning, navigation and robotic assistance for skull base surgery
Discussion

• Many benefits **but low accuracy**

• Errors may result **from many places**
 – Registration error
 – Calibration error of cutter tip
 – Robot kinematics
 – Undetected head movement

• Has high ergonomic benefits to the surgeon
Relevance

• Hope to address inaccuracies with photoacoustic ultrasound imaging
• Need to understand current system to successfully build upon it
• Results show that the system is feasible, methods are more important for our implementation
The Positives

• Developed a system that incorporated cooperative control with image-guidance
• Well-written paper and clearly explained methods
• Results show a very feasible system through a couple of different experiments
Limitations

• Not enough trials
• Quantitative analysis for cadaver experiments are not strong
• Virtual fixture boundary movement (problems with algorithm)
• Overcut error analysis in phantom experiments assumption
Future Work

- Increase accuracy of the system through **intraoperative photoacoustic ultrasound imaging**
- More experiments under **non-ideal** conditions
- Update virtual fixture definition
- Incorporate telemanipulation (**long-term**)
- Reduce error!!!
Conclusion

• There is a high feasibility of an integrated system for use in skull base surgeries
• Virtual fixture definition allows for increased safety and efficiency in procedures
• However, the errors seen are too large for clinical implementation
• Next steps are to use an intraoperative imaging system to improve accuracy
Questions?

An integrated system for planning, navigation and robotic assistance for skull base surgery.

Xia, T., Baird, C., Jallo, G., Hayes, K., Nakajima, N., Hata, N. and Kazanzides, P.
doi: 10.1002/rcs.213