Ultrasound Imaging of Brain Shunts

Checkpoint Presentation
Team 1

Members: Rongguang Han, Yang Hong

Mentors: Dr. E. Boctor, Dr. R. Taylor

April 23, 2013
Overview

- Project Summary
- Deliverables
- Progress: Phantom Construction
- Progress: Imaging
- Timeline
- Milestone Validation
- Dependencies
- Reading list
Problem: Brain shunts suffers from high incidence of occlusion that the in-grown tissues block the CSF flow.

Project Goal: Use external US probe, together with photoacoustic excitation to image occlusions and brain shunts inside the skull.
Original Deliverables

- **Minimum – without skull**
 - Design and build a ultrasound friendly brain phantom and insert the shunts. *(Done)*
 - Preliminary test of US probe for reflected PA signal detection. *(Done)*
 - Collect and process the data of the occlusion with brain phantom into delayed image. *(Done)*
Original Deliverables

- **Expected – with skull**
 - Collect and process the data of the occlusion into delayed image. *(Done)*
 - Capability to distinguish shunts, tissues and fluids. **✗**
 - Demonstrate PA imaging of shunts with different levels of occlusion. *(In progress, will be done in this week.)*
Original Deliverables

- **Maximum**
 - Demonstrate real-time PA imaging through the skull of shunts with different levels of occlusion
 - Monitor clearing of the shunt
NEW Deliverables

- Maximum
 - Visualization of fiber end point
 - Delayed monitoring (due to data collection time of DAQ)
 - Approaching of the fiber to the occlusion
 - Accumulation of occlusion
Phantom Construction

Two parts: Brain & Skull

- Brain part: model the environment of the brain
 support the shunt tube

- Skull: model the real effect of bone on US imaging
 • 3D printer not available
 • 3DP service will miss the best time to do the post-processing
Phantom Construction

What we did …

• Several simple shaped phantoms …

Pure gelatin phantom
(Very Stiff)

Gelatin and Fiber phantom
(Relatively soft, Tissue-like)
Phantom Construction

What we are using now …
Progress: Imaging

- Ultrasound generation
 - laser
- Data collection
 - Sonix Touch & DAQ
- Data processing
 - Beamform
- Image formation
Progress: Imaging

Project Summary
Deliverables
Progress: Phantom
Progress: Imaging
Milestones
Dependencies
Reading list

12
Progress: Imaging

- Test with bones of different thickness
 - Thin piece of bone (2mm)
Progress: Imaging

- Test with bones of different thickness
 - Thin piece of bone (2mm)
 - Laser energy: 0.75mJ
 - Distance: 2mm
Progress: Imaging

- Test with bones of different thickness
 - Thicker piece of bone (4mm)
 - Laser energy: 0.75mJ
 - Distance: 2mm
Progress: Imaging

- Test with distance between the fiber and the occlusion
 - Bone thickness: 4mm
 - Laser energy: 0.75mJ
 - Distance: 5mm
Progress: Imaging

- Test with distance between the fiber and the occlusion
 - Bone thickness: 4mm
 - Laser energy: 0.75mJ
 - Distance: 10mm
Progress: Imaging

- Test with different sizes of occlusion
 - Bone thickness: 4mm
 - Laser energy: 0.75mJ
 - Distance: 2mm
 - Size: previous
Progress: Imaging

- Test with different sizes of occlusion
 - Bone thickness: 4mm
 - Laser energy: 0.75mJ
 - Distance: 2mm
 - Size: twice the thickness of previous
Progress: Imaging

- Test with different sizes of occlusion
 - Bone thickness: 4mm
 - Laser energy: 0.75mJ
 - Distance: 2mm
 - Size: no occlusion
Progress: Imaging

- **Problem**
 - Bones get harder for ultrasound as time goes on.
 - Borrowed human bone is not usable.
 - Real-time monitoring is not realizable due to the hardware limitation.

- **Next step**
 - Change the position of the probe from perpendicular to aligned with the shunts
 - Inject tiny pieces of occlusion with a needle and collect the image into movie
 - Delayed monitoring
<table>
<thead>
<tr>
<th>Goals/Milestones</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Week4</td>
<td>Week1</td>
<td>Week2</td>
</tr>
<tr>
<td>Milestone 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain Phantom Construction (Han)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System setup(Yang) Done</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preliminary tests(Yang) Done</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment on phantom w/o skull(Both)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visualization of occlusion(Yang)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milestone Validation(Both)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skull Construction(Han)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment on phantom with skull(Both)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Different levels of occlusions set in the shunts(Han)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visualization of occlusion(Yang)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visualization of different levels of occlusion(Yang)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milestone Validation(Both)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collect data from different materials(Han)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrate MUSiiCToolkit(Both)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrate clearing stem(Han)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visualization of clearing stem end point(Yang)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milestone Validation(Both)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documentation(Both)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poster Making and Presentation(Both)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project Summary

- **Deliverables**
- **Progress: Phantom**
- **Progress: Imaging**
- **Milestones**
- **Dependencies**
- **Reading list**
Revised Timeline Version 1

Milestone 1
- **Goals/Milestones**
 - Brain Phantom Construction (Han)
 - System setup (Yang) Done
 - Preliminary tests (Yang) Done
 - Experiment on phantom w/o skull (Both)
 - Visualization of occlusion (Yang)
 - Milestone Validation (Both)

<table>
<thead>
<tr>
<th>Goals/Milestones</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Week4</td>
<td>Week1</td>
<td>Week2</td>
</tr>
</tbody>
</table>

Milestone 2
- **Goals/Milestones**
 - Skull Construction (Han)
 - Experiment on phantom with skull (Both)
 - Different levels of occlusions set in the shunts (Han)
 - Visualization of occlusion (Yang)
 - Visualization of different levels of occlusion (Yang)
 - Milestone Validation (Both)

Milestone 3
- **Goals/Milestones**
 - Collect data from different materials (Han)
 - Integrate MUSiiC Toolkit (Both)
 - Integrate clearing stem (Han)
 - Visualization of clearing stem end point (Yang)
 - Milestone Validation (Both)

<table>
<thead>
<tr>
<th>Goals/Milestones</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Integrate clearing stem (Han)** marked as completed.

- **Documentation (Both)**
- **Poster Making and Presentation (Both)**
Revised Timeline Version 2

Milestone 1
- **Goals/Milestones**
 - Brain Phantom Construction (Han)
 - System setup(Yang) Done
 - Preliminary tests(Yang) Done
 - Experiment on phantom w/o skull(Both) Done
 - Visualization of occlusion(Yang) Done
 - Milestone Validation(Both) Done

Milestone 2
- **Goals/Milestones**
 - Skull Construction(Han)
 - Experiment on phantom with skull(Both)
 - Different levels of occlusions set in the shunts(Han)
 - Visualization of occlusion(Yang) Done
 - Visualization of different levels of occlusion(Yang)
 - Milestone Validation(Both)

Milestone 3
- **Goals/Milestones**
 - Collect data from different materials(Han)
 - Delayed monitoring
 - Visualization of clearing stem end point(Yang)
 - Milestone Validation(Both)

Deliverables
- Documentation(Both)
- Poster Making and Presentation(Both)

Milestones
- March Week4
- April Week1
- April Week2
- April Week3
- April Week4
- May Week1
- May Week2
Milestone Validations

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Original plan</th>
<th>Revised plan I</th>
<th>Revised plan II</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phantom construction</td>
<td>2/28</td>
<td>4/8</td>
<td></td>
<td>Done</td>
</tr>
<tr>
<td>Preliminary test</td>
<td>2/28</td>
<td>3/27</td>
<td></td>
<td>Done</td>
</tr>
<tr>
<td>Visualization of occlusion w/o skull</td>
<td>3/18</td>
<td>3/29</td>
<td></td>
<td>Done</td>
</tr>
<tr>
<td>Visualization of occlusion with skull</td>
<td>4/15</td>
<td>4/22</td>
<td></td>
<td>Done</td>
</tr>
<tr>
<td>Visualization of different level of occlusions</td>
<td>4/15</td>
<td>4/22</td>
<td></td>
<td>Done</td>
</tr>
<tr>
<td>Visualization of the fiber end point</td>
<td>5/10</td>
<td>5/10</td>
<td>5/10</td>
<td>In progress</td>
</tr>
<tr>
<td>Delayed monitoring</td>
<td>5/10</td>
<td>5/10</td>
<td>5/10</td>
<td>In progress</td>
</tr>
</tbody>
</table>
Dependencies

<table>
<thead>
<tr>
<th>Dependency</th>
<th>Resolved by</th>
<th>Resolved</th>
<th>Fallback plan</th>
<th>Influences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to Dr. Boctor’s lab</td>
<td>3/11</td>
<td>Yes</td>
<td></td>
<td>All the milestones</td>
</tr>
<tr>
<td>Laser system back</td>
<td>3/18</td>
<td>Yes</td>
<td></td>
<td>All the milestones</td>
</tr>
<tr>
<td>Jello phantoms</td>
<td>3/26</td>
<td>Yes</td>
<td></td>
<td>Milestone I</td>
</tr>
<tr>
<td>PVA phantoms</td>
<td>3/31</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skull construction</td>
<td>4/8</td>
<td>Yes</td>
<td>Borrow a piece of skull</td>
<td>Milestone II</td>
</tr>
<tr>
<td>Data collection training</td>
<td>2/27</td>
<td>Yes</td>
<td></td>
<td>Milestone I</td>
</tr>
<tr>
<td>Training of laser</td>
<td>3/27</td>
<td>Yes</td>
<td></td>
<td>Milestone I</td>
</tr>
</tbody>
</table>
Reading list

Phantom Construction

- Sean Jy-Shyang Chen1, Pierre Hellier2, Jean-Yves Gauvrit4,5,6, Maud Marchal3, Xavier Morandi4,5,6, and D. Louis Collins: An Anthropomorphic Polyvinyl Alcohol Triple-Modality Brain Phantom based on Colin27. McConnell Brain Imaging Centre, McGill University, Montreal, Canada

- Brian W. Pogue, Michael S. Patterson: Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. Journal of Biomedical Optics 11(4), 041102 (July/August 2006).

Photoacoustic and Ultrasound imaging

Limng Nie, Xin Cai, Konstantin Maslov, Alejandro Garcia-Uribe, Mark A. Anastasio, Lihong V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler”, Washington University, Department of Biomedical Engineering, St. Louis, Missouri 63130.

Thank you!