Constrained Control for Surgical Assistant Robots

Ankor Kapoor, Ming Li, and Russell H. Taylor

Seminar Presentation by Emily Daggett (Group 2)
Partner: Paul Wilkening
Mentors: Russell Taylor and Jin Kang
Presentation Outline

- Summary
 - Project Overview
 - Paper Selection
- Problem
- Experimental Methods
- Results
- Analysis & Conclusions
Overview

• Cochlear Implant: medical device used to restore hearing
 • External: Microphone, Speech Processor, Transmitter
 • Internal: Receiver/stimulator, Electrode Array

• Problem
 • Difficulty of inserting electrode array manually

• Project goals
 • Image the cochlea using 2 different types of OCT Imaging
 • Bulk Scan
 • Side-view Probe
 • Create Models from OCT images
 • Create Virtual Fixtures for use in inserting electrode array
Paper Selection

- Virtual Fixtures
 - Increase safety and precision of procedure
 - Filter out hand tremor
 - Keep surgical instruments in pre-defined safe zones

- Creating VFs for cochlear implant insertion is a main goal of our project
Goals of Paper

• Task Primitives
 • Stay on a point
 • Maintain a direction
 • Move along a line
 • Rotate around a line
 • Stay above a plane

• Hard and Soft Constraints
 • Preferred regions
 • Safety regions
 • Forbidden regions

Image credit: Kapoor et al.
Problem

• Virtual Fixtures are useless without algorithms to implement them

• Paper provides customizable implementation algorithm
Experimental Methods

- JHU Steady-Hand Robot
- Prescribed Motion: Sinusoidal Curve

Image credit: Kapoor et al.
Results

- Algorithm models VFIs using least squares problem
- Solving least squares problems with linear constraints more efficient than solving nonlinearly constrained problems
- Higher accuracy with nonlinear constraints

<table>
<thead>
<tr>
<th># Hyperplanes</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>Nonlinear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (ms)</td>
<td>2.2680</td>
<td>4.1225</td>
<td>7.2842</td>
<td>14.3549</td>
<td>9.4017</td>
</tr>
</tbody>
</table>

Image credit: Kapoor et al.
Results

• “Soft” Virtual Fixtures
 • Provide resistance, do not halt movement
 • Useful in Safety Regions

• “Hard” Virtual Fixtures
 • Completely stop movement
 • Useful in Forbidden Regions
Results

Soft Constraint

Hard Constraint

(a)

(b)

Image credit: Kapoor et al.
Analysis & Conclusion

• Relevance
 • Framework for creating complex virtual fixtures
 • Broken in to Task Primitives
 • Can be used for inserting cochlear implant along cochlear axis
 • Uses of Soft and Hard Constraints
 • Preferred region: axis of cochlea
 • Safety region: close to edges of cochlea
 • Forbidden region: touching or nearly touching edges of cochlea

• Future Work
 • Experiment on other robots
 • Form changing tools
Questions?