Optical Coherence Tomography Imaging of the Inner Ear: A Feasability Study With Implications for Cochlear Implantation

James Lin, MD; Hinrich Staecker, MD, PhD; M. Samir Jafri, PhD

Seminar Presentation
Presenter: Paul Wilkening
Partner: Emily Daggett
Mentors: Russell Taylor and Jin Kang
Presentation Outline

- Project Overview and Paper Selection
- Problem
- Theory
- Experiment
- Assessment
Project Overview

• Cochlear Implant
 • Used to restore function to the cochlea
 • Standard practice is manual insertion via forceps

• Project goals
 • Image the cochlea using OCT Imaging
 • Create Models from OCT images
 • Create Virtual Fixtures for use in inserting electrode array
 • Enact virtual fixtures on steady-hand robot and insert implant
Paper Selection

• Paper Topic
 • Cochlear Implantation using OCT Feasibility study
 • Efficacy of OCT Imaging on temporal bone

• Feasibility of Project
 • Strength of OCT signal
 • Possibility of contour creation

• Accuracy of Constructed Models
 • Precision of contours detected in OCT scans
 • Precision of constructed model
Problem

• Current practice
 • Manual insertion via forceps
 • Relies on marker a fixed distance from implant tip

• Issues with standard practice
 • Low visibility
 • Precision needed
 • Hand tremors
 • Possibility of inaccurate placement
Theory

- Interferometry principle of light
 - Beams of light travel different distances
 - Phase difference indicates distance

- OCT setup
 - Beam from light source split
 - One beam hits reference mirror
 - Other bounces off of temporal bone
 - Recombined at detector
 - Phase difference analyzed

Courtesy Lin et al
Experimental Setup

- Rotating OCT probe developed
 - Scans are taken as probe rotates in cochlea
 - For each rotation, the scans are fit to a polar graph
 - These b-scans are taken at multiple depths

Courtesy Lin et al
Experimental Results

- Rotating OCT probe mouse test
 - Probe inserted into mouse tympanic cavity
 - B-scans imaged at 1 Hz
- Rotating OCT probe human test
 - Probe inserted into cadaveric cochlea
 - B-scans imaged at 3.1 Hz
- Key results
 - Scala vestibuli
 - Scala tympani
 - Basilar membrane
 - Resolution of roughly 10 micrometers

Courtesy Dorland’s Medical Dictionary

ERC | CISST
Experimental Results (continued)

Courtesy Lin et al
Experimental Results (continued)

Courtesy Lin et al
Assessment

• Relevance of results to project
 • Similar side-viewing OCT probe setup
 • Possibility of contour not addressed
 • Key structures identified
 • Signal strong enough to see into adjacent cavities
 • Informative about cochlear structure
 • Lacked detail concerning precision

• Future Work
 • Identifying endolymphatic hydrops
 • Intratympanic injections
 • Various other otologic procedures
Bibliography

[Logos of ERC and CISST]
Questions?