Intraoperative Fiducial Tracking in TORS

CIS II Project #15
Plan Presentation

Xiao Hu

Project Mentors: Wen P. Liu, Anton Deguet
Project Goal

- The goal of this project is to design and implement an intraoperative fiducial tracking algorithm in TORS that can accurately track the fiducial under the endoscope.

Images courtesy of Wen P. liu
Project Background

- TORS: TransOral Robotic Surgery
- The base of tongue tumors has become a significant health care concern. Because most base of tongue tumors are buried deep in the musculature of the tongue, when doing the transoral surgery, expert surgeons always rely on experience to remain correctly oriented with respect to critical anatomy.
- Such practice leaves considerable room for improvement and has brought TORS. It is a minimally invasive surgical intervention for resection of base of tongue tumors.

http://www.ohsu.edu/xd/health/services/comprehensive-robotics-program/surgical-services/transoral-robotic-surgery-tors.cfm
Project Relevance

- A system that uses intraoperative CBCT to do endoscopic video augmentation for base of tongue tumor resection in TORS has been developed

- The whole workflow:
 - Identify and segment critical oropharyngeal structures from preoperative images
 - Deformably register these data to the intraoperative endoscopic view on CBCT
 - Register the intraoperative CBCT with planning data to the endoscopic video

\[\text{Video}_{CT} = (\text{Video}_{CBCT} (\text{CBCT}_{CT})(\text{Data}_{CT})) \]
Project Relevance (Continue)

• Stereoscopic Video Augmentation System:

 \[\text{Video} T_{\text{CBCT}} \]

• Using Fiducial

\[
\begin{align*}
\text{Video} P_{\text{fiducial}} &= \text{Video} T_{\text{CBCT}} \ast \text{CBCT} P_{\text{fiducial}} \\
\text{Video} T_{\text{CBCT}} &= \text{Video} P_{\text{fiducial}} \ast (\text{CBCT} P_{\text{fiducial}})^{-1}
\end{align*}
\]

courtesy of Wen P. Liu
Project Relevance (continue)

- Stereoscopic Video Augmentation System:

Transformation tree depicting the coordinate systems and associated objects maintained by the video augmentation program through tracking of the da Vinci and registration steps.
• Stereoscopic Video Augmentation System:

\[
\text{Video}_{\text{CBCT}} = \text{Video}_{p_{\text{fiducial}}} \cdot (\text{CBCT}_{p_{\text{fiducial}}})^{-1}
\]
Project Relevance (Continue)

- Stereoscopic Video Augmentation System:
 \[\text{Video}^T \text{CBCT} \rightarrow \text{Video}_P \text{fiducial} \]

Fiducial Registration

Intraoperative Fiducial Tracking
Project Technical Summary

- The goal is to achieve real-time fiducial tracking under the endoscopy
- Difficulties are the jitter of the fiducial during the surgery and the complexity of the background information
Algorithm: Kalman Filter

Prior knowledge of state

\[P_{k-1|k-1} \]
\[\hat{x}_{k-1|k-1} \]

Prediction step
Based on e.g. physical model

Next timestep
\[k \leftarrow k + 1 \]

Update step
Compare prediction to measurements

\[P_{k|k} \]
\[\hat{x}_{k|k} \]

Measurements
\[y_k \]

Output estimate of state

Project Technical Summary (Continue)

- Implementation:

 Coding with C++ (using cisst and saw libraries and OpenGL)

- Testing:

 Work on the da Vinci robot console

 Using CAD to design new fiducial
Project Deliverables

• Minimum:
 Implement fiducial segmentation of the intraoperative endoscopic images
 Implement fiducial tracking of the intraoperative stereo video
 Test and optimize the implementation to confirm better result than the already existed tracking method

• Expected:
 Test fiducial tracking under the robot endoscopic camera and get intraoperative real-time tracking result

• Maximum:
 Optimize the implementation to confirm more accurate tracking and record a video for the tracking
 Design new fiducial for better and more accurate tracking
Project Key Dates

<table>
<thead>
<tr>
<th>Date</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb. 20</td>
<td>Complete Software Installation: Visual Studio 9.0, CMake, SVN, cisst saw library, OpenGL</td>
</tr>
<tr>
<td>Feb. 21</td>
<td>Begin algorithm design</td>
</tr>
<tr>
<td>Feb. 22</td>
<td>Begin software and cisst study</td>
</tr>
<tr>
<td>Feb. 23</td>
<td>Begin new fiducial design (optional, might do it after testing the implementation on the robot)</td>
</tr>
<tr>
<td>March. 1</td>
<td>Print the new fiducial (optional)</td>
</tr>
<tr>
<td>March. 7</td>
<td>Algorithm study and design complete</td>
</tr>
<tr>
<td>March. 10</td>
<td>Begin algorithm implementation (coding) with C++</td>
</tr>
<tr>
<td>April. 10</td>
<td>(Minimum deliverable) Complete algorithm implementation and optimization</td>
</tr>
<tr>
<td>April. 12</td>
<td>Begin testing on the robot</td>
</tr>
<tr>
<td>April. 22</td>
<td>(Expected deliverable) Complete testing on the robot and get the intraoperative tracking result</td>
</tr>
<tr>
<td>April. 29</td>
<td>(Maximum deliverable) Complete optimization and record video for the fiducial tracking during TORS</td>
</tr>
<tr>
<td>May. 9</td>
<td>Post session and project report</td>
</tr>
</tbody>
</table>
Project Dependencies

• Cisst and saw understanding
 Solution: Read tutorials and ask Wen and Anton

• Access to 3D printer and knowledge of CAD
 Solution: Read books and ask Wen

• Access to the robot
 Solution: Ask Wen and Prof. Taylor for permission
Project Management Plan

• Bi-weekly tele-conference with Wen before March.
 Weekly meeting with Wen afterwards through the completion of the project.

• Bi-weekly meeting with Anton after the beginning of implementation.
Project Reading List

• We P. Liu et al, “Toward intraoperative image-guided transoral robotic surgery”. J Robotic Surg 2013
• Wen P. Liu et al, “Intraoperative Cone Beam CT Guidance for Transoral Robotic Surgery”
• Deguet A et al, “The cisst libraries for computer assisted intervention systems”. MICCA Workshop
• Stoyanov D, “Stereoscopic scene flow for robotic assisted minimally invasive surgery”. MICCA-2012
Thank You