Spring 2015, CIS II Project #4

Project Checkpoint Presentation

Han Xiao
hxiao9@jhu.edu

Mentors
Dr. Nassir Navab (nassir.navab@jhu.edu)
Bernhard Fuerst (be.fuerst@jhu.edu)
Javad Fotouhi (fotouhi@jhu.edu)
1. Project Overview

Our goal is to integrate a depth sensor (Kinect sensor) into the CamC (Camera Augmented Mobile C-arm) system.

Figure 2. Illustration for Kinect mounting. (Navab, Nassir, IEEE Transactions 2010)
Xray Gantry

Kinect

CCD Camera
- Hands and tools segmentation
- Spatial relationships determination
- Enhanced X-ray overlay without blocking

Figure 1. Overlay view of CamC. (Navab et al. IEEE TMI 2010)
2. Current Progress

4.1 Minimum deliverables
• ImFusion plugin for X-ray image acquisition, and CCD camera video acquisition. completed
• Kinect sensor mounting and point cloud acquisition. completed
• X-ray image – video calibration, and video – point cloud registration. 80% completed. X-ray and CCD calibration will be finished this week

4.2 Expected deliverables
• Enhanced X-ray overlay rendering. In progress

4.3 Maximum deliverables
• Phantom validation and surgical procedure evaluation
• Add more useful overlays according to depth information
3. Software Architecture

Figure 5. Software architecture block diagram
4. Registration

Figure 4. RGBD and RGB camera calibration

• Crop and up sample Kinect RGB and depth frame (bilinear sampling).

• Use the Matlab stereo camera calibrator to perform calibration.

• Extract intrinsic and extrinsic for future use.
Calibration result (resolution: 1292*964)
Math of back projecting

A pixel in the Kinect RGB image
\[p1 = (x \ y \ 1)^T \]

Transform into 3d with depth data
\[P1 = (X \ Y \ Z \ 1)^T \]

The extrinsic between two cameras
\[H = \begin{pmatrix} R_1^2 & T_1^2 \\ 0 & 1 \end{pmatrix} \]

Transform point into CCD camera frame
\[P2 = H \ast P1 \]

Project 3d point into CCD image frame
\[p2 = \begin{pmatrix} \alpha & \gamma & ux & 0 \\ 0 & \beta & uy & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \ast P2 \]

Scale \(p2 \) to make
\[p2 = (x_2 \ y_2 \ 1)^T \]
Pseudo code of back projecting (C++ with OpenCV)

while(running){
 cv::Mat KinectDepth, KinectRGB, CCDRGB;
 acquire(KinectDepth, KinectRGB, CCDRGB);
 crop_upsample(KinectDepth);
 crop_upsample(KinectRGB);

 std::vector<cv::Point3f> pointcloud;
 computepointcloud(pointcloud, KinectDepth);

 cv::Mat Rotation, Rotation_Vector, Translation, Intrinsic, DistortionCoefficient;
 cv::Rodrigues(Rotation, Rotation_Vector);

 std::vector<cv::Point2f> imagePoints;
 cv::projectPoints(pointcloud, Rotation_Vector, Translation, Intrinsic, DistortionCoefficient, imagePoints);

 cv::Mat CCDDepth;
 for(int i=0;i<imagePoints.size();i++){
 if((int)imagePoints[i].x >=0 && (int)imagePoints[i].x <1292 && (int)imagePoints[i].y >=0 && (int)imagePoints[i].y <=964){
 CCDDepth.at<unsigned short>((int)imagePoints[i].y,(int)imagePoints[i].x) = (unsigned short)pointc[i].z;
 }
 }
}
Result
5. Issues Encountered

Most of the issues comes from hardware

• Low resolution of Kinect RGB and Depth Frame
 – Up sampling is a solution but affects accuracy

• Virtual Camera
 – Relationship original kinect camera
 – Point cloud computation

• Noise in the new depth map
 – Need analyze the source of noises
 – Need an algorithm to filter out noises

• Artifacts and occluding areas
 – Focus only on circle area
 – Increase kinect distance, or two kinect (future work)

• Speed
 – Parallelization
 – Texture mapping OpenGL
 – Better PC
6. Dependencies

- PC and remote control of C-arm application machine
 Expected resolve date: February 20 resolved
- Kinect sensor and its mounting supports
 Expected resolve date: March 6 resolved
- ImFusion source code for point cloud data
 Expected resolve date: February 27 resolved
- Registration and calibration tools
 Expected resolve date: March 4 resolved
- Animal tissue specimen and phantoms
 After developing the new system, I need to do validation with phantoms on the new system. I will get animal tissue specimens from the CAMP group.
 Expected resolve date: April 22
7. Timeline

2015

Feb 9 – Mar 6 (4 Weeks)

ImFusion Plugin

Feb 21 – Mar 6 (2 Weeks)

Kinect Mounting & Sensor Reading

Feb 21 – Mar 6 (2 Weeks)

Registration & Calibration

Mar 7 – Mar 27 (3 Weeks)

Enhanced Overlay

Mar 7 – Apr 3 (3.5 Weeks)

Phantom Validation & Evaluation

Mar 20 – Apr 17 (3 Weeks)

Report Writing & Poster

Apr 18 – May 1 (2 Weeks)

Documentation

Apr 20 – May 6 (2 Weeks)
8. Milestones

• **February 27**: Finish developing ImFusion plugin for X-ray image and video acquisition. **Completed**
• **March 6**: Kinect mounted on C-arm and get point cloud data from ImFusion. **Completed**
• **March 27**: Kinect point cloud and video are registered; X-ray image and video are registered (Minimum deliverable achieved) **Did not make it on that date**
• **April 17**: An enhanced overlay developed (Expected deliverable achieved)
• **May 1**: Finish animal tissue specimen validation and evaluation (Maximum deliverable achieved)
• **May 6**: Final poster presentation
Thanks for your attention!