SCALE-ININVARIANT REGISTRATION OF MONOCULAR ENDOSCOPIC IMAGES TO CT-SCANS FOR SINUS SURGERY

Paper by D. Burschka et al.
John Lee
Project Description

• Image Processing for Video-CT Registration in Sinus Surgery
• Use contour detection and optical flow algorithms to reconstruct surface of monocular endoscopic video
• Register reconstructed surface to CT data for intraoperative probe tracking
Paper Selection

• “Scale-invariant registration of monocular endoscopic images to CT-scans for sinus surgery” seeks to solve the same problem as our project

• They use monocular sinus endoscopic images as opposed to other imaging techniques such as fluoroscopy, x-ray, or stereoscopic endoscope

• Uses different image processing from our project
Problem Summary

- The sinuses are near the brain, eye, and major arteries, so high precision is necessary during surgery.
- This main goals of the paper are to:
 - Reconstruct the 3D surface geometry from monocular endoscopic images.
 - Register the camera location to pre-operative CT image coordinates to track the endoscope.
Problem Summary

• Current tracking methods use a navigational tracking device and external fiducials
• Limitations in the context of sinus surgeries:
 • Can’t register to anatomical landmarks
 • Can’t account for anatomical changes during surgery
 • Can’t autonomously and repetitively register a patient
Architecture

Monocular SLAM system

Feature Extraction (corners, blobs, etc.)

ΔT

Ego-motion Estimator

3D reconstruction

Fused 3D map of the scene

3D features

6DoF pose

Pre-operative CT scan
After ICP registration, the average error between a set of selected points was 0.65 mm, compared to 0.40 mm in a fiducial based registration with four fiducials on the surface of the brain.

Able to robustly track ex vivo using a variety of anatomical structures such as significant vessel structures.
Methods: Tracking
Methods: Initialization

• System initialized with eight-point algorithm or manual feature selection
 • In eight-point algorithm, you can find the essential matrix of a system from eight-point correspondences.
 • Essential matrix, \tilde{E}, is defined as $p_i^*\tilde{E}p_i = 0$ for two corresponding camera projections p_i^* and p_i (in this case, two consecutive camera frames)
 • Essential matrix provides rotation matrix \tilde{R} and translation vector T such that $\tilde{E} = \tilde{R} \cdot \text{sk}(T)$
 • In manual feature selection, the surgeon selects three points with known correspondence to the CT-data to bootstrap the processing
Methods: Localization and Mapping

- Camera motion must be estimated simultaneously with reconstruction
- One way of recovering the motion between two camera frames is by using the eight-point algorithm from above
- In some cases, there may be fewer than eight points to match. They use Burschka and Hager’s method for camera localization and mapping with only three point correspondences
- Brief overview of their algorithm follows
Methods: Localization and Mapping

- Each 3D point P_i is represented as a direction vector $n_i = \frac{p_i}{\|p_i\|}$ and distance to the point D_i such that $P_i = D_i \cdot n_i$. Since the scale m of reconstruction may be unknown, use $\lambda_i = \frac{D_i}{m}$.

- For current frame $\{P_i\}$ and next frame $\{P_i^*\}$, estimate R and T as such.

\[
\bar{P} = \frac{1}{n} \sum_{i=1}^{n} P_i, \quad \bar{P}^* = \frac{1}{n} \sum_{i=1}^{n} P_i^*
\]

\[
P_i' = P_i - \bar{P}, \quad P_i'^* = P_i^* - \bar{P}^*
\]

\[
M = \sum_{i=1}^{n} P_i'^* P_i^T, \quad [UDV^T] = \text{svd}(M)
\]

\[
R = V \cdot U^T, \quad T = \bar{P}^* - R\bar{P}
\]

- For each new image, start with initial guess for λ_i set to the previous distance, then iterate to find true R, T, λ_i
Methods: Scale Recovery

• The system has an estimate for the current camera position. Using this estimate, they carve out a portion of the CT surface that they expect is currently visible to the camera.

• Look at the covariance matrix between point cloud from selected CT region and the current camera reconstruction.
 • The two eigenvalues of this matrix from the larger eigenvalues define the supporting plane, and the third eigenvector describes the depth variation.
 • Using the eigenvalues and eigenvectors, they recover the scale and rotation between the two point clouds with respect to the supporting plane.
Methods: Scale Recovery

- Fig. 10. After the alignment along the normal vector to the supporting plane the scale is roughly recovered, but rotation around the normal vector is possible.

- Fig. 11. Distance to the supporting plane is used as a pseudo-image representation to match the sparse reconstruction (left) to the dense point cloud (right).
Methods: ICP

• Perform ICP (iterative closest point) between the two point aligned point clouds for registration
• They use a rigid registration as opposed to a deformable registration since the anatomy of the nasal and sinus cavity is mostly bony tissue
• They use a covariance tree variation of a k-D tree as their data structure
Relevance

• As said earlier, this paper seeks to solve the same problem we are trying to solve using the same kind of imaging data

• They provide alternative image processing techniques that we hope to learn from and build upon
Assessment

Pros

• Overcomes the limitations that come with fiducial based tracking
• Ability to get registration error of a target region that isn’t possible in current methods
• Comparable results to fiducial based methods

Cons

• Still susceptible to large anatomical changes e.g. bleeding that covers the camera
• More rigorous and quantitative testing of ex vivo tracking results
Conclusion

• They have shown that it is feasible to register and track an endoscope using image processing techniques
• We plan to implement a comparable workflow with equal or better results using different types of image features
Questions?