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Goal: Human-machine partnership to fundamentally 
improve interventional medicine
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Complementary Capabilities
Humans

• Excellent judgment & reasoning
• Excellent optical vision
• Cannot see through tissue
• Do not tolerate ionizing radiation
• Limited precision, hand tremor
• No stereotactic accuracy
• Moderately strong
• High dexterity (“human” scale)
• Big hands and bodies
• Reasonable force sensitivity
• Must rely on memory of 

preoperative plans and data

Robots
• No judgment
• Limited vision processing
• Can use x-rays, other sensors
• Do not mind radiation
• High precision
• High stereotactic accuracy 
• Variable strength
• Dexterity at different scales
• Variable sizes
• Can sense very small forces
• Can be programmed to use 

preoperative plans and data
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Common classes of medical robots
• Surgical “CAD/CAM” systems

– Goal is accurate execution of surgical plans
– Typically based on medical images
– Planning may be “online” or “offline”
– Execution is often at least semi-autonomous but may still 

involve interaction with humans
– Examples: Orthopaedic robots, needle placement robots, 

radiation therapy robots
• Surgical “assistant” systems

– Emphasis is on interactive control by human
– Human input may be through hand controllers (e.g., da Vinci), 

hand-over-hand (e.g., Mako,  JHU “steady hand” robots)
– Typically augmenting or supplementing human ability
– Common applications include MIS, microsurgery

• Note that the distinction is really somewhat arbitrary
– Most real systems have aspects of both.
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Surgical CAD/CAM: Orthopaedic Robots

D. Glozman
& M. Shoham

Robodoc

Mako Robotics Rio
http://www.makosurgical.com/

ACROBOT surgical robot

Blue Belt Technologies
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Image-guided needle placement

Masamune, Fichtinger, Iordachita, … Okamura, Webster, … Krieger, Fichtinger, Whitcomb, …

Fichtinger, Kazanzides,Burdette, Song … Iordachita, Fischer, Hata… Taylor, Masamune, Susil, Patriciu, Stoianovici,…
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Image Guided Radiotherapy

Cyberknife

•Radiation source mounted on robotic arm
•Automatic segmentation of targets
•Automated planning radiation beam path
• Image guide patient motion compensation 
for more accurate radiation targeting

Slide credit: Howie Choset + RHT http://www.varian.com/us/oncology/radiation_oncology/trilogy/

Varian Trilogy System
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Common classes of medical robots
• Surgical “CAD/CAM” systems

– Goal is accurate execution of surgical plans
– Typically based on medical images
– Planning may be “online” or “offline”
– Execution is often at least semi-autonomous but may still involve 

interaction with humans
– Examples: Orthopaedic robots, needle placement robots, radiation 

therapy robots
• Surgical “assistant” systems

– Emphasis is on interactive control by human
– Human input may be through hand controllers (e.g., da Vinci), hand-

over-hand (e.g., Mako,  JHU “steady hand” robots), mouse, or other
– Typically augmenting or supplementing human ability
– Common applications include MIS, microsurgery

• Note that the distinction is really somewhat arbitrary
– Most real systems have aspects of both
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Precision Augmentation

T. Lueth

K. Olds
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Common classes of medical robots
• Surgical “CAD/CAM” systems

– Goal is accurate execution of surgical plans
– Typically based on medical images
– Planning may be “online” or “offline”
– Execution is often at least semi-autonomous but may still 

involve interaction with humans
– Examples: Orthopaedic robots, needle placement robots, 

radiation therapy robots
• Surgical “assistant” systems

– Emphasis is on interactive control by human
– Human input may be through hand controllers (e.g., da Vinci), 

hand-over-hand (e.g., Mako,  JHU “steady hand” robots)
– Typically augmenting or supplementing human ability
– Common applications include MIS, microsurgery

• Note that the distinction is really somewhat arbitrary
– Most real systems have aspects of both.
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Surgical Assistant Systems

• Situation assessment
• Task strategy & decisions
• Sensory-motor coordination

Augmentation 
System

• Sensor processing
• Model interpretation
• Display

atlases

• Manipulation 
enhancement

• Online references & 
decision support

• Cooperative control 
and “macros”

atlases

libraries
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Problem: specifying motion for a [medical] robot

Motion 
level

control

Low level
control

Motor
currents

Joint positions
& velocities

Joint position or
velocity commands

Joint positions, 
velocities, & other 
state information

Sensor 
values

Desired motion 
description

Task - level constraints 
on how motion is doneTask level 

control
Sensor and state 
information

Robot kinematics
& motion limits

Surgeon input
Plan information
Anatomic models
Safety constraints
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Background: Robot Kinematics

   Joint positions 
!
q      Pose F = kins

!
q( )

Pose F
!
q+Δ

!
q( )= kins

!
q+Δ

!
q( )

ΔF iF= kins
!
q+Δ

!
q( )

ΔF= kins
!
q+Δ

!
q( )kins

!
q( )−1
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Position
control

Motor
currents

Sensor 
values

Surgeon input
Plan information
Anatomic models
Safety constraints

   
!
q, "q

One implementation

Motion 
level

control

    
!
qdes = Kins−1(ΔFdesFcur )

Task level 
control

  ΔFdes

   F,
!
q

   
!
qdes

   
!
q, "qSensor values

Robot kinematics
& motion limits

    

Kins(!), JKins (!)
"
qL ≤

"
q ≤
"
qu
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Background: Jacobean Robot Motion Control

    

Let F=[R,
!
p] be the current pose of a robot end effector and 

!
q = [q1,",qN ] be the current joint position values corresponding

to F.  I.e., F=Kins(
!
q), where Kins(") is a function  computing

the "forward kinematics" of the robot.  

   Joint positions 
!
q      Pose F = kins

!
q( )

     

Pose F
!
q+Δ

!
q( ) = kins

!
q+Δ

!
q( )

ΔFiF = kins
!
q+Δ

!
q( )

ΔF = kins
!
q+Δ

!
q( )kins

!
q( )−1
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Background: Jacobean Robot Motion Control

    

Let F=[R,
!
p] be the current pose of a robot end effector and 

!
q = [q1,",qN ] be the current joint position values corresponding

to F.  I.e., F=Kins(
!
q), where Kins(") is a function  computing

the "forward kinematics" of the robot.  Let ΔF •F=Kins(
!
q+ Δ

!
q)

    

For small Δ
!
q, we can write the following expression for ΔF = [Rot(

!α),
!ε ]

ΔF = Kins(
!
q+ Δ

!
q)Kins(

!
q)−1

which we typically linearize as

Δ
!
x =

!α
!ε

⎡

⎣
⎢

⎤

⎦
⎥ ≈ JKins (

!
q)Δ
!
q

    

Note that here we are computing ΔF in the base frame of the robot.
If we want to compute ΔF in the end effector frame, so that
F • ΔF=Kins(

!
q+ Δ

!
q), then we will get a slightly different expression

for JKins (
!
q), though the flavor will be the same

   Δ
!
q    Δ

!
x
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Background: Jacobean Robot Motion Control

   Joint positions 
!
q      Pose F = kins

!
q( )

      

Pose F
!
q+Δ

!
q( ) = kins

!
q+Δ

!
q( )

ΔFiF = kins
!
q+Δ

!
q( )

ΔF = kins
!
q+Δ

!
q( )kins

!
q( )−1

!
α
ε

⎡

⎣
⎢
⎢
⎤

⎦
⎥
⎥ ≈ J

!
q( )Δ
!
q

Δ
!
q≈ J

!
q( )−1

!
α
ε

⎡

⎣
⎢
⎢
⎤

⎦
⎥
⎥
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Background: Jacobean Robot Motion Control

!
α
ε

⎡

⎣
⎢
⎢
⎤

⎦
⎥
⎥ ≈ J

!
q( )Δ
!
q

Δ
!
q≈ argmin

Δ
!
q

J
!
q( )Δ
!
q−

!
α
ε

⎡

⎣
⎢
⎢
⎤

⎦
⎥
⎥

2

Alternative way of solving:

Advantages:

• Produces solution even if kinematically redundant 
or kinematically deficient

• Can add auxiliary constraints or objective function 
terms

23
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Position
control

Motor
currents or 
voltages

Sensor 
values

Surgeon input
Plan information
Anatomic models
Safety constraints

   
!
q, "q

Jacobean motion control implementation

Motion 
level

control

    
!
qdes =

!
q+ J−1(

!
q)Δ
!
xdes

Task level 
control

   Δ
!
xdes

   F,
!
q

   
!
qdes

   
!
q, "qSensor values

Robot kinematics
& motion limits

    

Kins(!), JKins (!)
"
qL ≤

"
q ≤
"
qu
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What about parallel-link robots?

25
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!
ai

   
!
bi

    Fp(
!
q)

 qi

    Fpe(
!
θ )     Fe(

!
q,
!
θ )

      

!
q = [q1,",q6 ]T = invk(Fp )

qi = Fp(
!
q)
!
ai −bi

Fp(
!
q+Δ

!
q) =ΔFp(

!
q,Δ
!
q)Fp(

!
q)

ΔFp ≈ [I+ sk( !αp ),
!
εp ]

!
γp = [ !αp

T ,
!
εp

T ]T

Δ
!
q≈ Jinvk (Fp(

!
q)) !γp   

!
γp ≈ Jinvk (Fp(

!
q))−1Δ

!
q
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!
ai

   
!
bi

    Fp(
!
q)

 qi

    Fpe(
!
θ )     Fe(

!
q,
!
θ )

      

Fpe(
!
θ +Δ

!
θ ) = Fpe(

!
θ )ΔFpe

(right )(
!
θ,Δ
!
θ )

≈Fpe(
!
θ ) i I+ sk( !αpe ),

!
εpe

⎡
⎣⎢

⎤
⎦⎥

!
αpe
!
εpe

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
=
!
γpe = Jpe(

!
θ )Δ
!
θ =

Jpe
R (
!
θ )

Jpe

!
p (
!
θ )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
Δ
!
θ
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ai
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bi
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 qi
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!
θ,Δ
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θ )Fe(

!
q,
!
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q,Δ
!
q)Fp(
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!
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!
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!
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!
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!
q,Δ
!
q,
!
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!
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Fe(
!
q,
!
θ ) = Fp(
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q)Fpe(
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Fe(
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q+Δ
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q,
!
θ +Δ
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θ ) =ΔFp(
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Steady Hand Robot
Hands on compliance control

Handle 
Force Kv

Joint 
Velocities

     

!
"
xdes = Kv

"
fh

!qcmd = Jkins
−1 !
"
xdes

[1] R. H. Taylor, J. Funda, B. Eldgridge, S. Gomory, K. Gruben, D. LaRose, M. Talamini, L. Kavoussi, and J. anderson, "Telerobotic assistant for 
laparoscopic surgery.", IEEE Eng Med Biol, vol. 14- 3, pp. 279-288, 1995

[2] R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. deJuan, and L. Kavoussi, "A Steady-Hand Robotic 
System for Microsurgical Augmentation", International Journal of Robotics Research, vol. 18- 12, pp. 1201-1210, 1999  
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Steady Hand Robot
Hands on compliance control with force scaling

Handle 
Force Kv

Joint 
Velocities

      

!
"
xdes = Kv (

"
fh −γ

"
ftip )

!qcmd = Jkins
−1 !
"
xdes

Tool tip 
Force

[1]  D. Rothbaum, J. Roy, G. Hager, R. Taylor, and L. Whitcomb, "Task Performance in stapedotomy: Comparison between surgeons of different experience 
levels", Otolaryngology -- Head and Neck Surgery, vol. 128- 1, pp. 71-77, January 2003   

[2] J. Roy and L. L. Whitcomb, "Adaptive Force Control of Position Controlled Robots: Theory and Experiment", IEEE Transactions on Robotics and 
Automation, vol. 18- 2, pp. 121-137, April 2002 
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Steady Hand Robot (Alternative Formulation)
Hands on compliance control with force scaling

Handle 
Force Kv

Joint 
Velocities

      

!
"
xdes = Kv (

"
fh−γ

"
ftip )

!
"
qcmd = argmin

!
"
qcmd

!
"
xdes−Jkins

!
"
qcmd

Tool tip 
Force

[1]  D. Rothbaum, J. Roy, G. Hager, R. Taylor, and L. Whitcomb, "Task Performance in stapedotomy: Comparison between surgeons of different experience 
levels", Otolaryngology -- Head and Neck Surgery, vol. 128- 1, pp. 71-77, January 2003   

[2] J. Roy and L. L. Whitcomb, "Adaptive Force Control of Position Controlled Robots: Theory and Experiment", IEEE Transactions on Robotics and 
Automation, vol. 18- 2, pp. 121-137, April 2002 
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Example: Fenestratration of Stapes Footplate

34
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Example: Fenestratration of Stapes Footplate
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Virtual Fixtures

• Bridge the gap between autonomous robots and 
direct human control.

• Assist the human operator in safer, faster, and 
more accurate task completion.

• Broadly Categorized
• Guidance VF
• Forbidden Region VF

• Different implementation
• Tele-manipulation
• Cooperative Control

36
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Background: Virtual Fixtures
• First proposed for complex telerobotic tasks, but draw upon rich prior research in robot 

assembly and other manufacturing automation applications

• Many authors, e.g., 
– L. B. Rosenberg, "Virtual Fixtures: Perceptual Tools for Telerobotic Manipulation," Proc. IEEE Virtual Reality 

International Symposium, 1993.
– B. Davies, S. Harris, M. Jakopec, K. Fan, and J. cobb, "Intraoperative application of a robotic knee surgery 

system”, MICCAI 1999.
– S. Park, R. D. Howe, and D. F. Torchiana, "Virtual Fixtures for Robotic Cardiac Surgery”, MICCAI 2001.
– S. Payandeh and Z. Stanisic, "On Application of Virtual Fixtures as an Aid for Telemanipulation and 

Training," Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2002.

• Discussion that follows draws upon work at IBM Research and within the CISST ERC at 
JHU.  E.g., 

– Funda, R. Taylor, B. Eldridge, S. Gomory, and K. Gruben, "Constrained Cartesian motion control for 
teleoperated surgical robots," IEEE Transactions on Robotics and Automation, vol. 12, pp. 453-466, 1996.

– R. Kumar, An Augmented Steady Hand System for Precise Micromanipulation, Ph.D thesis in Computer 
Science, The Johns Hopkins University, Baltimore, 2001.

– M. Li, M. Ishii, and R. H. Taylor, "Spatial Motion Constraints in Medical Robot Using Virtual Fixtures 
Generated by Anatomy," IEEE Transactions on Robotics, vol. 2, pp. 1270-1275, 2006.

– A. Kapoor, M. Li, and R. H. Taylor "Constrained Control for Surgical Assistant Robots," in IEEE Int. 
Conference on Robotics and Automation, Orlando, 2006, pp. 231-236.

– A. Kapoor and R. Taylor, "A Constrained Optimization Approach to Virtual Fixtures for Multi-Handed Tasks," 
in IEEE International Conference on Robotics and Automation (ICRA), Pasadena, 2008, pp. 3401-3406.

– M. Li, Intelligent Robotic Surgical Assistance for Sinus Surgery, PhD Thesis in Computer Science Baltimore, 
Maryland: The Johns Hopkins University, 2005.

– Ankur Kapoor, Motion Constrained Control of Robots for Dexterous Surgical Tasks, Ph.D. Thesis in 
Computer Science, The Johns Hopkins University, Baltimore, September 2007
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Original Motivation for IBM Work
• Kinematic control of robots for MIS
• E.g., LARS and HISAR robots
• LARS and other IBM robots were 

kinematically redundant
– Typically 7-9 actuated joints

• But tasks often imposed kinematic 
constraints
– E.g., no lateral motion at trocar

• Some robots (e.g., IBM/JHU HISAR and 
CMI’s AESOP) had passive joints

• General goals
– Exploit redundancy in best way possible
– Come as close as possible to providing 

desired motion subject to robot and task 
limits

• Our approach: view this as a constrained 
optimization problem
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LARS degrees of freedom

 XYZ

RCM

  Ry

  R tool

  Ry

  Rcam

 s

View 
direction

Clip-on
joystick

Video tracking
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LARS Video 
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LARS Video 
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Motion Specification Problem
• Requirements

– The tool shaft must pass within a specified distance of the entry port 
into the patient’s body

– The individual joint limits may not be exceeded 
• Goals

– Aim the camera as close as possible at a target 
• or move view in direction indicated by clip-on pointing device
• or move to track a video target on an instrument
• or aim the working channel of the endoscope at a target
• or something else (maybe a combination of goals)

– Keep the view as “upright” as possible
– Tool should pass as close as possible to entry port center
– Keep joints far away from their limits, to preserve options for future 

motion
– Minimize motion of XYZ joints
– Etc.
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Our approach: view as an optimization problem
• Currently formulate problem as constrained least 

squares problem
• Express goals in the objective function
• If multiple goals, objective function is a weighted sum 

of individual elements
• Add constraints for requirements
• Express constraints and objective function terms in 

whatever coordinate system is convenient
• Use Jacobean formulation to transform to joint space
• Solve for joint motion

43
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Example: keep tool tip near a point

    

!
D(Δ
!
x) = ΔF(

!
q,Δ
!
q)•F •ptip −

!
pgoal  

=
!α ×
!
t +
!ε +
!
t −
!
pgoal    where  

!
t = F •ptip

!α = J !α (
!
q)Δ
!
q

!ε = J!ε (
!
q)Δ
!
q    ΔF(

!
q,Δ
!
q)•F(

!
q)

   
!
ptip

   
!
pgoal

    
!
D(Δ
!
x)

Suppose we want to stay as close as possible 
while never going beyond 3mm from goal and 
also obeying joint limits

    

Δqdes = argmin
Δ
!
q

 
!
D(Δ
!
x)

2
=
!α ×
!
t +
!ε +
!
t −
!
pgoal

2

Subject to
!α = J !α (

!
q)Δ
!
q

!ε = J!ε (
!
q)Δ
!
q

!α ×
!
t +
!ε +
!
t −
!
pgoal ≤ 3

!
qL −

!
q ≤ Δ

!
q ≤
!
qU −

!
q
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Example: keep tool tip near a point
Suppose we want to stay as close as possible 
while never going beyond 3mm from goal and 
also obeying joint limits, but we also want to 
minimize the change in direction of the tool shaft

    

Δqdes = argmin
Δ
!
q

 ζ
!
D(Δ
!
x)

2
+η α ×R •

!
z

2

Subject to
!
x = Fi

!
ptip!

D(Δ
!
x)=
!α ×
!
t +
!ε +
!
x −
!
pgoal

!α = J !α (
!
q)Δ
!
q ;  
!ε = J!ε (

!
q)Δ
!
q

!
D(Δ
!
x) ≤ 3

!
qL −

!
q ≤ Δ

!
q ≤
!
qU −

!
q

 

    
!
x = Fi

!
ptip

   ΔF(
!
x)•F

   
!
ptip

   
!
pgoal

    
!
D(Δ
!
x)

Note weighting 
factors
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Solving the optimization problem
• Constrained linear least squares

– Combine constraints and goals from task and robot control
– Linearize and constrained least squares problem

– E.g., using “non-negative least squares” methods developed by 
Lawson and Hanson 

– Approach used in our IBM work and in Kumar, Li, Kapoor theses
• Constrained nonlinear least squares

– Approach explored by Kapoor (discuss later)
• Can also minimize other objective functions

– E.g., minimize an L1 norm (linear programming problem)

    

Δ
!
qdes = argmin

Δ
!
q

EtaskΔ
!
x −
!
ftask

2
+ E!qΔ

!
x −
!
f!q

2

subject to

Δ
!
x = JΔ

!
q;  AtaskΔ

!
x ≤
!
btask ; A!qΔ

!
q ≤
!
b!q  
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Position
control

Motor
currents or 
voltagesSensor

values

Surgeon input
Plan information
Anatomic models
Safety constraints

   
!
q, "q

Linear least squares implementation

    Etask ,
!
ftask

   F,
!
q

   
!
qdes

   
!
q, "qSensor values

Robot kinematics
& motion limits

    

Kins(!), JKins (!)
"
qL ≤

"
q ≤
"
qu ;E"q,

"
f"q

    Atask ,
!
btaskTask level 

control

Motion level
control

    

Δ
!
qdes = argmin

Δ
!
q

E • [Δ
!
x,Δ
!
q]T −

!
f

2

subject to

Δ
!
x = JΔ

!
q;  A • [Δ

!
x,Δ
!
q]T ≤

!
b
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Some IBM Movies

Vision-guided targetingEarly Constrained Motion
System (LapSYS) 
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Steady Hand Robot
High Level Constrained Control

Handle 
Force Kv

Joint 
Velocities

Reference 
Direction

Current Frame(s) 
Info.

Geometric 
Constraints on 

Frame(s)

Optimization  Framework
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Example: Hands-on Guiding with Forbidden Half Space

   F(
!
q) i ΔF(

!
q,Δ
!
q)

   
!
ptip

  
!
n

   
!
n i
!
p ≥ d

     

Δ
!
q = argmin

Δ
!
q

Kv

!
f−Jrhs(

!
q)Δ
!
q

Such that

d ≤
!
n i (F(

!
q)ΔFrhs(

!
q,Δ
!
q) i
!
ptip )

Note here we are using the 
right hand side Jacobean, since 
the force sensor is associated 
with the tool attachment point, 
and it is more natural for the 
motions to comply to pushes on 
the tool handle.
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Example: Hands-on Guiding with Forbidden Half Space

   ΔF(
!
q,Δ
!
q)•F(

!
q)

   
!
ptip

  
!
n

   
!
n i
!
p ≥ d

      

Δ
!
q = argmin

Δ
!
q

Kv

!
f−Jrhs(

!
q)Δ
!
q

Such that
!
α
!
ε

⎡

⎣
⎢
⎢
⎤

⎦
⎥
⎥ = Jrhs(

!
q)Δ
!
q

d ≤
!
n i F(

!
q) i ( !α×

!
ptip +

!
ε+
!
ptip )( )

I.e., 
!
α
!
ε

⎡

⎣
⎢
⎢
⎤

⎦
⎥
⎥ = Jrhs(

!
q)Δ
!
q

d ≤
!
n i R(

!
q) i ( !α×

!
ptip +

!
ε+
!
ptip )+

!
pkins( )
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Example: Hands-on Guiding with Forbidden Half Space

   ΔF(
!
q,Δ
!
q)•F(

!
q)

   
!
ptip

  
!
n

   
!
n i
!
p ≥ d

      

Δ
!
q = argmin

Δ
!
q

Kv

!
f−Jrhs(

!
q)Δ
!
q

2

Such that
!
α
!
ε

⎡

⎣
⎢
⎢
⎤

⎦
⎥
⎥ = Jrhs(

!
q)Δ
!
q

d−
!
n i
!
x≤
!
n i R(

!
q) i ( !α×

!
ptip +

!
ε)( )

!
x = F(

!
q)
!
ptip
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Example: Hands-on Guiding with Forbidden Half Space

   ΔF(
!
q,Δ
!
q) iF(

!
q)

   
!
ptip

  
!
n

   
!
n i
!
p ≥ d

     

Δ
!
q = argmin

Δ
!
q

Kv

!
f−Jkins(

!
q)Δ
!
q

2

Such that

d ≤
!
n i (ΔF(

!
q,Δ
!
q) iF(

!
q) i
!
ptip )

If we use the LHS Jacobean, we 
get something similar.  Note 
however that in this case the gain 
matrix will likely be pose 
dependent, since the it is more 
natural for the surgeon’s hand to 
follow the tool.  So it is useful to 
be able to make the conversion …
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LHS versus RHS Jacobeans

ΔF Jkins(
!
q)Δ
!
q( )iF(

!
q)=F(

!
q) iΔF(Jrhs(

!
q)Δ
!
q)

ΔR Jkins(
!
q)Δ
!
q( )iR(

!
q)=R(

!
q) iΔR(Jrhs(

!
q)Δ
!
q)

Define 

Jkins =
Jkins
α

Jkins
ε

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
   
!
αkins = Jkins

α Δ
!
q    Jrhs =

Jrhs
α

Jrhs
ε

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
   
!
αrhs = Jrhs

α Δ
!
q  

so

ΔR(Jrhs(
!
q)Δ
!
q)=R(

!
q)−1ΔR JkinsΔ

!
q( )iR(

!
q)

I+sk(αrhs )= I+R
−1sk(

!
αkins )R

sk(
!
αrhs )= sk(R−1!αkins )

Jrhs
α =R−1Jkins

α

and one can do something similar for the Δ
!
p parts.
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LHS versus RHS Jacobeans
ΔF Jkins(

!
q)Δ
!
q( )iF(

!
q)=F(

!
q) iΔF(Jrhs(

!
q)Δ
!
q)

Define 

Jkins =
Jkins
α

Jkins
ε

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
   
!
αkins = Jkins

α Δ
!
q    Jrhs =

Jrhs
α

Jrhs
ε

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
   
!
αrhs = Jrhs

α Δ
!
q  

so

R(
!
q)
!
εrhs +

!
p(
!
q)=ΔR(

!
αkins )

!
p(
!
q)+

!
εkins

R(
!
q)
!
εrhs =

!
p(
!
q)+

!
αkins×

!
p(
!
q)+

!
εkins −

!
p(
!
q)

!
εrhs =R(

!
q)−1 !αkins×

!
p(
!
q)+

!
εkins( )

=R(
!
q)−1 !εkins −sk

!
p(
!
q)( ) !αkins( )

=R(
!
q)−1!εkins −R(

!
q)−1sk

!
p(
!
q)( ) !αkins

Jrhs =
R−1 0

−R−1sk(
!
p) R−1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
Jkins
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Example: Hands-on Guiding to Follow a Path

   F(
!
q) i ΔF(

!
q,Δ
!
q)

   
!
ptip       

Δ
!
q = argmin

Δ
!
q

Kv

!
f−Jrhs(

!
q)Δ
!
q

Such that
!
e = (F(

!
q)ΔFrhs(

!
q,Δ
!
q) i
!
ptip )−

!
c

δ≥
!
e−
!
d i
!
e( )
!
d

  
!
d

  
!
e

  
!
c

Note: δ  is the maximum deviation allowed from the path
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Example: Hands-on Guiding to Follow a Path

   F(
!
q) i ΔF(

!
q,Δ
!
q)

   
!
ptip

      

Δ
!
q = argmin

Δ
!
q

Kv

!
f−Jrhs(

!
q)Δ
!
q

2

Such that
!
e = (F(

!
q) !α×

!
ptip +

!
ε+
!
ptip( ))− !c

!
α
!
ε

⎡

⎣
⎢
⎢
⎤

⎦
⎥
⎥ = Jrhs(

!
q)Δ
!
q

δ≥
!
e−
!
d i
!
e( )
!
d

  
!
d

  
!
e

  
!
c

Note: δ  is the maximum deviation allowed from the path
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Example: Hands-on Guiding to Follow a Path

   F(
!
q) i ΔF(

!
q,Δ
!
q)

   
!
ptip

      

Δ
!
q = argmin

Δ
!
q

Kv

!
f−Jrhs(

!
q)Δ
!
q

2

Such that
!
e = R(

!
q) !α×

!
ptip +

!
ε+
!
ptip( )+

!
p(
!
q)−
!
c

!
α
!
ε

⎡

⎣
⎢
⎢
⎤

⎦
⎥
⎥ = Jrhs(

!
q)Δ
!
q

δ≥
!
e−
!
d i
!
e( )
!
d

  
!
d

  
!
e

  
!
c

Note: δ  is the maximum deviation allowed from the path
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Example: Hands-on Guiding to Follow a Path

   F(
!
q) i ΔF(

!
q,Δ
!
q)

   
!
ptip

      

Δ
!
q = argmin

Δ
!
q

Kv

!
f−Jrhs(

!
q)Δ
!
q

2

Such that
!
e =
!
p(
!
q)+R(

!
q)
!
ptip +R(

!
q)!ε−R(

!
q)sk(

!
ptip ) !α

!
α
!
ε

⎡

⎣
⎢
⎢
⎤

⎦
⎥
⎥ = Jrhs(

!
q)Δ
!
q

δ≥
!
e−
!
d i
!
e( )
!
d

  
!
d

  
!
e

  
!
c

Approximate this by

      

−δ≤
!
e−
!
d i
!
e( )
!
d( )i Rot(

!
d,kπ / N)

!
g( )≤ δ   

for 0≤k≤N−1

and some 
!
g perpendicular to 

!
d
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Example: Hands-on Guiding to Follow a Path

   F(
!
q) i ΔF(

!
q,Δ
!
q)

   
!
ptip

      

Δ
!
q = argmin

Δ
!
q

Kv

!
f−Jrhs(

!
q)Δ
!
q

2
+ η
!
e−
!
d i
!
e( )
!
d

2

Such that
!
e =
!
p(
!
q)+R(

!
q)
!
ptip +R(

!
q)!ε−R(

!
q)sk(

!
ptip ) !α

!
α
!
ε

⎡

⎣
⎢
⎢
⎤

⎦
⎥
⎥ = Jrhs(

!
q)Δ
!
q

δ≥
!
e−
!
d i
!
e( )
!
d

  
!
d

  
!
e

  
!
c

Approximate this by

      

−δ≤
!
e−
!
d i
!
e( )
!
d( )i Rot(

!
d,kπ / N)

!
g( )≤ δ   

for 0≤k≤N−1

and some 
!
g perpendicular to 

!
d
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