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Human-machine partnership to fundamentally improve interventional medicine

Physicians Technology

Information

Patient 
Specific

Assistance

Statistical Process Improvement
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The key issue: mediating between human intention and action

Physicians

Information

Technology

Computer

?
Task 

Specification Task Execution

G.-Z. Yang, J. Cambias, K. Cleary, E. Daimler, J. Drake, P. E. Dupont, N. Hata, P. Kazanzides, S. Martel, R. V. 
Patel, V. J. Santos, and R. H. Taylor, "Medical robotics—Regulatory, ethical, and legal considerations for 
increasing levels of autonomy [Editorial]", Science Robotics, vol. 2- 4, p. eaam8638, 15 
March, 2017. 10.1126/scirobotics.aam8638
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Surgical “CAD/CAM”

Physicians Technology

Computer

Information

• Image processing
• Visualization
• Simulation
• Surgical plan optimization
• Registration
• Plan execution

Surgical “CAD” Surgical “CAM”
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Early Examples of Surgical “CAD/CAM” with Robots

Radiation Therapy SystemsRobodoc Total Joint Replacement

Dosimetry (DVHs)Segmented shapes
Dosimetry (DVHs)Segmented shapes

Dosimetry (DVHs)Segmented shapes
Dosimetry (DVHs)Segmented shapes

Dosimetry (DVHs)Segmented shapes
Dosimetry (DVHs)Segmented shapes

1992 2009

Taylor, Paul, Kazanzides, et al. Taylor, McNutt, Kazhdan, Patrucio, Wu, et al.
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Robotic Joint Replacement Surgery

Manual Surgery Robotic Surgery

Brent M ittelstadt Brent M ittelstadt

Taylor, Kazanzides, Paul, 
Mittelstadt, et al.

Planning:
• Initially interactive graphics with CT images
• Subsequently

• Automate segmentation
• Statistics based planning

Execution
• Combination of hand guiding and 

autonomous machining bones 
• Initially mechanical location of fiducials for 

registration 
• Subsequently

• ICP-based registration
• Image-based registration
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3D-2D Registration of Osteotomy Fragments

Moving Images

Fixed Images 
with Moving 
Image Edges

R. Grupp, R. Murphy, M. Armand, R. Taylor

GRUPP et al.: POSE ESTIMATION OF PERIACETABULAR OSTEOTOMY FRAGMENTS WITH INTRAOPERATIVE X-RAY NAVIGATION 3

The computerized system uses this information to compute
pose estimates of the fragment, and present the appropri-
ate biomechanical properties to the clinician [9]. Fragment
pose errors of 1.4 � 1.8° and 1.0 � 2.2 mm were reported.
Preoperative imaging also allows for an acetabular cartilage
model to be constructed, which is used to estimate joint
contact pressure for each acetabular pose [9]. The process of
manually digitizing the bone bur points during each fragment
reposition adds a small amount of time to the overall procedure
and may be subject to some error [23]. Liu also developed
a system for preoperative PAO planning and intraoperative
tracking of the fragment with optical tracking [11], [24].
In order to obtain intraoperative pose estimates, a separate
rigid body was attached to the fragment. Intraoperative pose
estimates were approximately within 1° of rotation of the
preoperative plan for each axis. However, fixing a separate
rigid body to the fragment is not necessarily practical when
using a state-of-the-art, minimally invasive, approach such as
[14] and [15]. For a rotational acetabular osteotomy (RAO)
[25], Takao used an optically tracked system to monitor
the osteotomes and fragment movement [13]. The fragment
pose was intraoperatively estimated by digitizing the anterior
edge of the acetabulum, which resulted in some difficulty
distinguishing between rotation and translation.

At the core of an X-Ray based navigation system is a
2D/3D registration algorithm. The goal of 2D/3D registration
is to determine the pose of 3D objects with respect to a
3D coordinate frame using a series of 2D X-Ray images.
Typically, a preoperative 3D model, such as a CT scan is used
to represent the patient, and the information contained in the
X-Ray image is used to determine the pose of the patient
with respect to the intraoperative X-Ray imager. The majority
of 2D/3D X-Ray registration methods may be classified as
either “intensity-based” or “feature-based,” however we limit
discussion to intensity-based methods in this paper.

Intensity-based registration performs an optimization over
the relevant pose parameters, using an objective function that
compares simulated radiographs, commonly referred to as
digitally reconstructed radiographs (DRRs), with the intra-
operative image [26]. The comparison is performed using a
mathematical construct known as a similarity measure [26].
Due to the differences in X-Ray energy between preoperative
CT and intraoperative fluoroscopy, the most effective similarity
metrics compare the 2D gradients of a measured radiograph
and a DRR, such as normalized cross-correlation between the
Sobel gradient images (Grad-NCC) [26]. Registration with
multiple 2D views, and known relative poses between each
view, is accomplished by creating DRRs at each view and
summing the similarity scores for each view [27]. In order to
register multiple objects with known shape, each object may
be treated as a separate volume, and DRRs for each object are
summed together to create a single DRR [16]. The registration
problem for N object poses: ✓1, . . . , ✓N , with M intraoperative
views: I1 . . . IM , a pre-operative CT: ICT, a DRR operator for
view m: Pm, and similarity metric: S is concisely stated in

(1).

argmin
✓1,...,✓N2SE(3)

MX

m=1

S
 
Im,

NX

n=1

Pm (ICT ; ✓n)

!
(1)

With the advent of general purpose GPU programming
resources, Otake was able to efficiently form many DRRs
simultaneously and use a state of the art “Covariance Ma-
trix Adaptation: Evolutionary Search” (CMA-ES) optimization
strategy [28] to carry out registration of a single femur
using three views in under 22 seconds [27]. Relative pose
information was computed using an external fiducial for a
non-motorized C-Arm and preoperatively calibrated with a
motorized C-Arm.

Several groups have demonstrated registration of multiple
objects with intensity-based objective functions and accurate
shape models, or with a statistical prior of the shape distribu-
tions.

In [16], Otake’s framework was extended to multiple objects
for the knee joint (distal femur, patella, proximal tibia) tracking
with bi-plane fluoroscopy. An evaluation of the registration
was conducted on simulated bi-planar flexion sequences and a
measured dataset. Initial registration times at the start of each
sequence for the femur, tibia, and patella bones were between
2 and 5 minutes. All femur and tibia poses were estimated
within 2° and 2 mm, and 74% of patella poses were estimated
within the same thresholds.

Gong proposed to use intensity-based registration to intra-
operatively estimate the position of bone fragments resulting
from a distal radius fracture [17]. The approach requires
preoperative knowledge of the bone fragment shapes and uses
a preoperative, but post-trauma, CT scan [17]. The values of
some similarity metric parameters, specific to the experiments
performed in [17], were determined empirically. Using the
CMA-ES optimization strategy, the registration first searched
over the “global” pose of the fragment collection, followed by
an optimization of each fragment individually. A simulation
study was conducted on synthetic fractures created from a
single subject’s CT, and registration was performed with
two views. Two 3D printed phantoms were used to test the
method with four fluoroscopic views from a tracked C-Arm.
Target registration errors (TREs) smaller than 3 mm were
achieved when using a manual, interactive, initialization of
the registration. Execution times of 3-9 minutes were reported
using modest hardware.

In order to localize and determine the shape of carpal bones
in the hand, Chen, et al. use a 2D/3D registration of a single
fluoroscopic view to 3D statistical shape and pose models of
the carpal bones, radius, and ulna [29]. Their method was
evaluated on a simulated dataset as well as a measured dataset.
During the registration, extremely tight search bounds of 4°
on rotation axes and 4 pixels of translation were used. TREs
of 2.45 mm were reported in simulation, and TREs from
0.93 � 2.37 were reported in the flouroscopic experiments.
Registration times were approximately 3 minutes per frame.
Similar to [17], the similarity metric requires some parameters
to be determined experimentally.

Although related by the motivation to track multiple objects
with intensity-based registration, the aforementioned works do

Slide credit: Robert Grupp

8



11/18/21

5

Laboratory for Computational Sensing and RoboticsCopyright ©  2021 R. H. Taylor

Ultrasound-assisted Registration

(2) Digitize proximal bone 
using tracked pointer

(3) Collect tracked US 
images of distal bone(1) Generate 

surface model from 
CT

(4) Register points/contours to surface model

S. Billings, H. J. Kang, A. Cheng, E. Boctor, P. Kazanzides, and R. Taylor, "M inimally invasive registration for computer-assisted orthopedic surgery: combining tracked 
ultrasound and bone surface points via the P-IM LOP algorithm", Int. J. Computer Assisted Radiology and Surgery, p. (epub ahead of print),  2015. 
http://dx.doi.org/10.1007/s11548-015-1188-z   DOI 10.1007/s11548-015-1188-z
.  
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Image-guided needle placement

Masamune, Fichtinger, Iordachita, … Okamura, Webster, … Krieger, Fichtinger, Whitcomb, …

Fichtinger, Kazanzides,Burdette, Song … Iordachita, Fischer, Hata…Taylor, Masamune, Susil, Patriciu, Stoianovici,…

Monfaredi, Sharma, Kim, Iordachita, Cleary 

Iordachita, Fischer, Hata…
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Example: External Beam Radiation Therapy Systems

Dosimetry 
(DVHs)

Segmented 
shapes Dosimetry 

(DVHs)
Segmented 
shapes Dosimetry 

(DVHs)
Segmented 
shapes Dosimetry 

(DVHs)
Segmented 
shapes Dosimetry 

(DVHs)
Segmented 
shapes Dosimetry 

(DVHs)
Segmented 
shapes

• “Robotic” systems since at least 1980s
• Task Specification

– Planning of radiation pattern from CT
– Typically human-machine process involving 

optimization + simulation  

• Task Execution
– Very careful and accurate machine calibration & 

verification
– Registration to patient
– Machine delivers beams of radiation from multiple 

angles

• Challenges/Opportunities
– Adaptation to patient changes/motion
– Experience-based planning to optimize outcomes
– The “usual” (system integrity, etc.)

JHU Faculty: Todd McNutt, Russell Taylor, Mischa 
Kazhdan, Ilya Shpitser, Sauleh Siddiqui
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Conventional Radiation Therapy Planning

Specify Optimization 
Goals & Constraints

Simulate treatment 
& visualize results

Optimize 
treatment parameters

Treatment planPhysician Approves?

Dosimetrist

No

Yes

Model of Tumor 
& Surrounding 

Structures 

CT scan

Treat
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Quality control check

Current 
planning 
process

Patient 
Database

Dosimetry 
(DVHs)

Segmented 
shapes Dosimetry 

(DVHs)
Segmented 
shapes Dosimetry 

(DVHs)
Segmented 
shapes Dosimetry 

(DVHs)
Segmented 
shapes Dosimetry 

(DVHs)
Segmented 
shapes Dosimetry 

(DVHs)
Segmented 
shapes Dosimetry 

(DVHs)
Descriptor 
(OVHs)

Best DVH for similar 
patients

Dosimetry (DVHs)Segmented shapes
Dosimetry (DVHs)Descriptor (OVHs)

Dosimetry (DVHs)Segmented shapes
Dosimetry (DVHs)Descriptor (OVHs)

Dosimetry (DVHs)Segmented shapes
Dosimetry (DVHs)Descriptor (OVHs)

Identify patients with 
similar OVHs

New patient 
OVH

New patient PTV and 
critical structures

T. McNutt, B. Wu,  M. Kazhdan, P. Simari, A. King, R. Jacques, J. Wong, R. Taylor

Input to planning process
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Sample automated radiation planning result
T. McNutt, A. Patriciu, B. Wu, R.. Taylor et al.

Original plan Automated plan 30% reduction in dose to parotids

0 10 20 30 40 50 60 70 800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dose(Gy)

Auto plan
Original Plan
Dot: right
No-dot: left

brain (Gy) (max) Brainstem (Gy) (max) Cord4mm (Gy) (max) L inner ear (Gy)(mean)

original 61.25 54.58 41.75 57.18
re-plan 56.33 46.48 37.89 43.72

R inner ear (Gy) (mean) mandible (Gy) (max) larynx for edema (V50) esophagus (Gy)(max)

original 40.57 66.58 61% 63.74
re-plan 38.38 63.78 59% 61
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Beating Heart MIS with 3D US Guidance
Paul Thienphrapa, Aleksandra Popovic, Russell Taylor

US Beacon
(on tip)

Foreign 
Body

3D TEE
Probe

Combined
RCM Robot and

Dexterous Manipulator

Workstation 
Computer

Philips 3D
Ultrasound

Cone Beam CT
(optional)

TE
E

Dexterous Manipulator

P. Thienphrapa, A. Popovic, and R. H. Taylor, "Guidance of a High Dexterity 
Robot under 3D Ultrasound for Minimally Invasive Retrieval of Foreign Bodies 
from a Beating Heart", in IEEE Int. Conf. Rob. Aut. (ICRA), Hong Kong, May 31-
Jun 6, 2014.  pp. 4869-4874. 
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Retrieval Experiment Results

Thienphrapa et al. 2013
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Current dominant paradigm for interactive surgery

Physicians

Information

Computer

Technology

Master 
manipulator 

motions

Robot joint 
motions & 

state

Stereo video

• Teleoperator control
• Safety monitoring
• User console
• Housekeeping
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Augmented Reality: da Vinci Patient-Side Assistant

View through HMD (HoloLens)Setup with transparent abdominal phantom

L. Qian, A. Deguet, P. Kazanzides, “ARssist: Augmented Reality on a Head-Mounted Display for the First Assistant in Robotic Surgery”, IET Healthcare Technology Letters, Oct. 2018

L. Qian, A. Deguet, Z. Wang, Y. Liu, P. Kazanzides, “Augmented Reality Assisted Instrument Insertion and Tool Manipulation for the First Assistant in Robotic Surgery”, IEEE ICRA, May 2019.

L. Qian, A. Deguet, Z. Wang, Y. Liu, P. Kazanzides 

20
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Augmented Reality: Laparoscopic Guidance

2x 2x

L. Qian, X. Zhang, A. Deguet, P. Kazanzides. "ARAMIS: Augmented Reality Assistance for Minimally Invasive Surgery Using a Head-Mounted Display." MICCAI 2019.

L. Qian, X. Zhang, A. Deguet, P. Kazanzides 
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Emerging paradigm ( shared autonomy & assistant modes) 

Physicians

Information

Computer

Technology

Master 
manipulator 

motions

Robot joint 
motions & 

state

• Teleoperator control
• Virtual fixtures
• Shared autonomy
• Information fusion
• Visualization
• Smart tools & sensors
• Safety monitoring, etc.

Stereo video

Haptic feedback

22
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Physicians

Computer

Technology

Master 
manipulator 

motions

Robot joint 
motions & 

state

• Teleoperator control
• Virtual fixtures
• Shared autonomy
• Information fusion
• Visualization
• Smart tools & sensors
• Safety monitoring, etc.

Stereo video

Haptic feedback

Information

• Preoperative images
• Segmented anatomy
• Surgical plans & guidelines

• Intraoperative images
• Other intraoperative sensing
• Updated anatomic models
• Surgical phase recognition & 

plan updates

• Complete record of 
intervention

• Statistical models 
and outcome dataPreoperative Planning
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Intelligent Medical Robotic Systems and Equipment Lab

Smart Autonomous Surgery

25
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Intelligent Medical Robotic Systems and Equipment Lab

Human supervision for approving 
suture plans NIR view

Suture planning is done at the end of
breathing cycle to reduce 3D model
inaccuracy caused by tissue’s motion.
Robot is controlled under a remote center
of motion (RCM) and motions are synced
with breathing and the planned sutures.

NIR view

Mono-color view from
the 3D endoscope

5X playback
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ULTRASOUND PALPATION
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Complementary Situational Awareness in a Robotic 
Surgical Assistant

Manipulation

GuidanceVisualization

Teleop, Palpation

VFs , Surface Modelling, 
Registration, Haptics

Stiffness and surface 
information, Display

Surgeon Technology

Information

Force Sinusoidal Motion

z

y
Stiff feature

Motion of the probe tip

Surface

x
Position Sinusoidal Motion

x

z

y
Stiff feature

Motion of the probe tip

Surface

NSF NRI 1327566: JHU, CMU, Vanderbilt
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Complementary Situational Awareness in a Robotic Surgical 
Assistant

Manipulation

Guidance
Visualization

Teleop, Palpation

VFs , Surface Modelling, 
Registration, Haptics

Stiffness and surface 
information, Display

Surgeon Technology

Information

Force Sinusoidal Motion

z

y
Stiff feature

Motion of the probe tip

Surface

x
Position Sinusoidal Motion

x

z

y
Stiff feature

Motion of the probe tip

Surface

NSF NRI 1327566: JHU, CMU, Vanderbilt
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b) c)a)

Region of 
Interest

Results from automated 
Sinusoidal palpation

a) c)b)

Region of 
Interest

Teleoperated palpation w. 
superimposed motion

Ground 
truth

Automated Sinusoidal Palpation

CONTINUOUS STIFFNESS AND GEOMETRY UPDATE

Prediction points

Global GP 
training region

Offline Estimation

Probe palpation 
motionProbe trajectory

Local GP 
training region

Prediction points

Online Estimation
Chalasani et. al,  ICRA 2016 Chalasani et. al,  RAL 2018

Preetham Chalasani, Russell Taylor
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Online Geometry and Stiffness Update

Robot 
Palpation

Add 𝑝! , 𝜏! to 𝐻𝐺"

𝑝# = 𝑝#(ℎ(𝑝!))

Add 𝑝! to 𝐻𝐺$
𝑝# = 𝑝!

Estimate surface 
information at 𝒩(ℎ(𝑝#))

𝑝! , 𝜏!
𝑝! , 𝜏!

No

Yes

Query 
point 𝑝#

Get 𝒬% from 
𝐻𝐺" for 𝑝#

𝒢𝒫 = Train(𝒬%) 

𝒢𝒫, 𝑝#

𝐻𝐺$

Write

Write
𝐻𝐺"

Read

Read/Writ
e

Get 𝒩 ℎ 𝑝# from 𝐻𝐺$

Update 𝜇& 𝑝# , 𝑣&(𝑝#)
Update 𝜇% 𝑝# , 𝑣%(𝑝#)

Prediction Phase

Training Phase

𝑝# ℎ 𝑝! =
∅

Select query point 

𝒑𝒄

𝓝 𝒉 𝒑𝒄 P. Chalasani, L. Wang, R. Yasin, N. Simaan, and R. H. 
Taylor, "Preliminary Evaluation of an Online Estimation 
Method for Organ Geometry and Tissue Stiffnes", IEEE 
Robotics and Automation Letters, p. [early access online 
version], 2018. 10.1109/LRA.2018.2801481
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Semi-Autonomous Palpation Example
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Robot-assisted confocal endoscopic imaging for retinal surgery

Z. Li, M. Shahbazi, M. Patel, P. Chalasani, E. O’Sullivan, H. Zhang, K. Vyas, A. Deguet, P. Gehlbach, I. Iordachita, G. Z. Yang, R. H. Taylor, “A 
Comparison of Cooperative vs. Teleoperated Robot-Assisted Frameworks for Confocal Endomicroscopy Scanning  of the Retina”,  IEEE TMRB, in 
submission.

Simple hand 
guiding with 
robot (5 DoF)

Hybrid control:
• Hand-guided 

lateral motion
• Image-based 

depth/focus 
control

33
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Anatomy-Based Virtual Fixtures: An Additional Complication

Virtual fixture is often used for increased efficiency and operation safety. 
However, it is challenging to automatically generate virtual fixture for complex anatomies.
Existing researches usually approximate the anatomical shape when using parametric forms 
such as ellipsoid [4][5][6], or using sparse level-set functions [7]. The process is labor intensive, 
and the virtual fixture cannot accurately reflect the anatomical shape.

Copyright © 2020 Zhaoshuo Li. All rights reserved. 34

Virtual fixture approximates 
the anatomy as an ellipsoid

[4] R. Prada and S. Payandeh, “A study on design and analysis of virtual fixtures for cutting in training environments,” in First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environ-ment and 
Teleoperator Systems. World Haptics Conference.IEEE,2005, pp. 375–380.
[5] S. Park, R. D. Howe, and D. F. Torchiana, “Virtual fixtures for robotic cardiac surgery,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,2001, pp. 1419–1420.
[6] M. M. Marinho, B. V. Adorno, K. Harada, and M. Mitsuishi, “Dynamic active constraints for surgical robots using vector-field inequalities,” IEEE Transactions on Robotics, vol. 35, no. 5, pp. 1166–1185, 2019.
[7] J. Ren, R. V. Patel, K. A. McIsaac, G. Guiraudon, and T. M. Peters, “Dynamic 3-d virtual fixtures for minimally invasive beating heart procedures,” IEEE transactions on medical imaging, vol. 27, no. 8,pp. 1061–1070, 2008.
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Challenges

Copyright © 2020 Zhaoshuo Li. All rights reserved.

Convex objectConcave object

35

• Mesh is an intuitive representation of 3D 
objects, which is widely used in medical 
imaging.

• Prior work [8] proposes to treat triangles 
in mesh as plane constraints. However, it 
only works with concave objects.

[8] M. Li, M. Ishii, and R. H. Taylor, “Spatial motion constraints using virtual fixtures generated by anatomy,” IEEE Transactions on Robotics,vol. 23, no. 1, pp. 4–19, 2007.
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Virtual Fixture Formulation
• In this work, an anatomical mesh-based virtual fixture is proposed

– Generates virtual fixture for complex anatomy automatically
– Implements an efficient and dynamic formulation 

Copyright © 2020 Zhaoshuo Li. All 
rights reserved.

36
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Virtual Fixture Formulation

• Mesh-based constraint formulation algorithm is based on closest point (CP) and 
local geometry
– Store mesh as principle-direction tree (PD-Tree) [9] and define a motion sphere
– Determine the closest point on triangles
– Determine the local geometry

• geometry = )
concave if 𝑁!,#$ v > 0
concex if 𝑁!,#% v < 0

Copyright © 2020 Zhaoshuo Li. All rights reserved.

Convex objectConcave object

39

𝑁!,#$

v

𝑁!,#$

v

[9] Williams, R. Taylor, and L. Wolff, “Augmented kd techniques for accelerated registration and distance measurement of surfaces,”Computer Aided Surgery: Computer-
Integrated Surgery of the Headand Spine, pp. 1–21, 1997.
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Virtual Fixture Formulation

• Mesh-based constraint formulation algorithm is based on closest point (CP) and 
local geometry

Copyright © 2020 Zhaoshuo Li. All rights reserved. 40

40
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Virtual Fixture Formulation

• Mesh-based constraint formulation algorithm is based on closest point (CP) and 
local geometry

Copyright © 2020 Zhaoshuo Li. All rights reserved.

: tool position
: closest point

Green region: allowable
Red region: forbidden

41
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Virtual Fixture Formulation

• Mesh-based constraint formulation algorithm is based on closest point (CP) and 
local geometry

Copyright © 2020 Zhaoshuo Li. All rights reserved.

: tool position
: closest point

Green region: allowable
Red region: forbidden

42
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Virtual Fixtures for Craniosynostosis 

Z. Li, A. Gordon, T. Looi, J. Drake, C. Forrest, and R. H. Taylor, "Anatomical Mesh-Based Virtual Fixtures for Surgical Robots", in International 
Conference on Intelligent Robots and Systems (IROS), Las Vegas, Oct. 25-29, 2020. 
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Emerging paradigm ( shared autonomy & assistant modes) 

Information

Surgeon 
Hand Forces

Robot joint 
motions & state

Computer
• Cooperative control
• Virtual fixtures
• Shared autonomy
• Information fusion
• Visualization
• Smart tools & sensors
• Safety monitoring, etc.

Haptic feedback

Physicians

Technology
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Steady Hand Manipulation

Robodoc Canine Surgery, 1990 LARS Robot in IBM Lab, ca. 1993
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• Robotic arm:
– force control, accuracy, repeatability

• Co-robotic ultrasound

In a biopsy procedure, 
physiological motions of the 
target is another problem to solve.

“Hand-over-hand control” Respiratory motion

Image-based automated tracking of lesion to stabilize view in biopsy  

T. Xie, M. Shahbazi, Y. Wu, R. H. Taylor, and E. M. Boctor, "Stabilized ultrasound imaging of a moving object using 2D B-mode 
images and convolutional neural network", in Proc.SPIE, 2020 https://doi.org/10.1117/12.2550198 10.1117/12.2550198.
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Image-based automated tracking of lesion to stabilize view in biopsy  

Target 
view

Target 
motion

Errors 
over 
time

No tracking With  tracking

• Target motion: 
• 4, 11 and 6 mm along axial, lateral and elevational axes
• 10 and 6 degree about x and y axes (w/o in-plane rotation)

• Error:
• Translations:  less than 0.7 mm
• Rotations: less than 2 degree

• No fine tuning. Same linear probe used for CNN training.

Stable imaging
T. Xie, M. Shahbazi, Y. Wu, R. H. Taylor, and E. M. Boctor, "Stabilized ultrasound imaging 
of a moving object using 2D B-mode images and convolutional neural network", in 
Proc.SPIE, 2020 https://doi.org/10.1117/12.2550198 10.1117/12.2550198.
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Synthetic-Tracked Aperture Ultrasound
(STrAtUS) Imaging Using Robotic Guidance

Emad Boctor, et al.
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6x

Single Pose

STRATUS

Synthetic-Tracked Aperture Ultrasound  (STrAtUS) 
Imaging Using Robotic Guidance & Virtual Fixtures

Emad Boctor, et al.

50



11/18/21

23

Laboratory for Computational Sensing and RoboticsCopyright ©  2021 R. H. Taylor

Cadaver Study: Sinus Surgery with Virtual Fixtures

K. Olds, M. Balicki, M. Ishii, R. Taylor
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3D airway reconstruction during nasal endoscopic 
procedures without external tracking devices

X. Liu, A. Sinha, M. Unbareth, M. Ishii, G. D. Hager, R. H. Taylor, and A. Reiter, "Self-Supervised Learning for Dense 
Depth Estimation in Monocular Endoscopy", (best paper) in MICCAI Computer Assisted and Robotic Endoscopy 
(CARE), Grenada, Spain, September 16, 2018. 

Xingtong 
Liu

Monoscopic Endoscope Video Dense Point Cloud Reconstruction
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A “smart” sinus endoscopy assistant

Recovery of 3D 
anatomy from 

endoscopic
video

Registration
Navigation

Quantitative endoscopy
Assistance Modes

Learning & Training

X. Liu

R. Taylor, A. Sinha, S. Leonard, X. Liu, G, Hager, M. Ishii,  et al.

• Dense point cloud recovery 
from untracked monocular 
endoscope video

• Registration to preoperative 
CT or statistical model

• Intraoperative navigation 
and surgical assistance
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The Galen Platform
Technology:
• Custom 5-DOF architecture
• “Steady Hand” cooperative control
• Hand tremor cancellation
• Virtual fixtures

Ease of Use:
• Same footprint as a person
• Accommodates standard instruments
• Minimal change to existing surgical 

workflow

Broad Applications:
• ENT, spine, brain, trauma, ….

Disclosure: Under a license agreement between Galen Robotics, Inc. and the Johns Hopkins 
University, Dr. Taylor and the University are entitled to royalty distributions on technology 
related to technology described in the study discussed in this publication. Dr. Taylor also is a 
paid consultant to and owns equity in Galen Robotics, Inc. This arrangement has been 
reviewed and approved by the Johns Hopkins University in accordance with its conflict-of-
interest policies.
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A “smart” skull base surgical assistant

3D Point Cloud

Assistance Modes & Virtual fixtures
Navigation

Advanced Visualization
Learning & Training

Patient CT

Registered 
and updated  

real time 
model

Tool tracking

Stereo Video

Max Li, Russ Taylor, Mathias 
Unberath, Francis Creighton, …

Zhaoshuo Li
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Stereoscopic Microscope Navigation Work-flow

Zhaoshuo (Max Li), Mathias Unberath, Russell Taylor,  et al.
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Automated Segmentation of Temporal Bone Structures

Andy Ding, Alex Lu, Francis Creighton, Russ Taylor
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Results

65

• Mean time to completion: 221 +/- 35 
seconds (3.6 min) 

• Average Hausdorff Distance ~0.3mm

Incus

hSCC

Andy Ding, Alex Lu, Francis Creighton, Russ Taylor
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Registration Result

Inlier RMSE # of Correspondence

Direct generalization 1.152 mm 6946

Self supervision 1.147 mm 6928

Zhaoshuo (Max Li), Mathias Unberath, Russell Taylor,  et al.
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Virtual Fixtures for Mastoidectomy

Francis X. Creighton, Christopher R. Razavi, Paul R. Wilkening, Rui Yin, Nicholas Lamaison, Russell 
H. Taylor, John P. Carey, “Image-Guided Mastoidectomy with the Robotic ENT Microsurgery 
System (REMS)”, AAO Conference, October 7, 2018.

• 5 identical phantoms
• 3 plane virtual fixture planned 

from CT

• Engineer with no surgical training
• Robot enforces constraints

• Results assessed using 
postoperative CT

Disclosure: Under a license agreement between Galen Robotics, Inc. and the Johns Hopkins University, Dr. Taylor and the University are entitled to royalty distributions on technology related to 
technology described in the study discussed in this publication. Dr. Taylor also is a paid consultant to and owns equity in Galen Robotics, Inc. This arrangement has been reviewed and approved by the 
Johns Hopkins University in accordance with its conflict-of-interest policies.
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Next Steps: Incorporate Instrument Tracking

Sue-Min Cho, Zhaoshuo (Max Li), Mathias Unberath, Russell Taylor,  et al.
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Virtual Reality for Synergistic Surgical Training and Data Generation

Adnan Munawar, Francis Creighton, Mathias Unberath, Zhaoshuo (Max Li), Russell Taylor,  et al.

• Simulator for training otology and lateral skullbase surgeons
• Data for transfer learning for stereo 
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Surgical Scene Depth Estimation and Reconstruction

Surgical vision: depth estimation and 3D reconstruction from robotic stereo videos

[Li et al. ICCV 2021] [Long et al. MICCAI 2021]
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Microsurgery Assistant Workstation

OCT Display

3D Display 
with 

Overlays

FBG Interrogator

Audio 
OutputEyeRobot2

Stereo video
Microscope

Force and OCT 
sensing tools
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Retina Mosaicking, Annotation, and Registration

R. Richa, B. Vagvolgyi, R. Taylor, G. Hager, MICCAI 2012,  
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Bilateral Robot-Assisted Retinal Surgery
Iulian Iordachita, et al.
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Example: Force-limited Retinal Membrane Peeling

https://www.youtube.com/
watch?v=JCpZ255_YVI&featu
re=emb_logo

Berc Gonenc, I. Iordachita, et al.
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Microscope viewAutomatic light pipe actuation

Changyan He, et al. IEEE Trans. on Mechatronics, 2020

Automatic Light Pipe Actuating System  in Bilateral Surgery
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Robot-assisted confocal endoscopic imaging for retinal surgery

Z. Li, M. Shahbazi, M. Patel, P. Chalasani, E. O’Sullivan, H. Zhang, K. Vyas, A. Deguet, P. Gehlbach, I. Iordachita, G. Z. Yang, R. H. Taylor, “A Comparison 
of Cooperative vs. Teleoperated Robot-Assisted Frameworks for Confocal Endomicroscopy Scanning  of the Retina”,  IROS 2019.

Simple hand 
guiding with 
robot (5 DoF)

Hybrid control:
• Hand-guided 

lateral motion
• Image-based 

depth/focus 
control
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Intelligent Medical Robotic Systems and Equipment Lab

Smart Autonomous Surgery
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Intelligent Medical Robotic Systems and Equipment Lab

Human supervision for approving 
suture plans NIR view

Suture planning is done at the end of
breathing cycle to reduce 3D model
inaccuracy caused by tissue’s motion.
Robot is controlled under a remote center
of motion (RCM) and motions are synced
with breathing and the planned sutures.

NIR view

Mono-color view from
the 3D endoscope

5X playback

79

Laboratory for Computational Sensing and RoboticsCopyright ©  2021 R. H. Taylor

The key issue: mediating between human intention and action

Physicians

Information

Technology

Computer

Human Intention Interpretation

• Human-machine interfaces
• Modeling of task and environment
• Task specification protocols
• Verification & monitoring protocols
• Shared autonomy 

? Assured Action 

• Robust & reliable technology
• System design & assurance
• Information & system security

• Modeling of task and environment
• Unusual situation recognition

• Experience tracking & learning
• Safe error recovery
• Shared Control
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The key issue: mediating between human intention and actionInformation and machine “intelligence” are the crucial links

Physicians

Information

Technology

Computer

Human Intention Interpretation

• Human-machine interfaces
• Modeling of task and environment
• Task specification protocols
• Verification & monitoring protocols
• Shared autonomy 

? Assured Action 

• Robust & reliable technology
• System design & assurance
• Information & system security

• Modeling of task and environment
• Unusual situation recognition

• Experience tracking & learning
• Safe error recovery
• Shared Control

Information
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