

Checkpoint Presentation: Robotic Endoscopic Tumor Ablation System

Elizabeth Cha

Mentors: Dr. Russell Taylor, Kevin Olds

Sponsor: Dr. Jeremy Richmon

Motivation

- Approximately 25,000 new cases of throat cancer every year in the US
- Radiation and chemotherapy have many undesirable side effects
- Surgical approaches are often used to treat throat cancer
 - Through incisions in the patient's neck

Goal

 Inside the airway using an endoscope and specialized surgical tools including a cutting laser

Problem

- Minimum of 4 hands needed
- Scope does not remain stationary when hands removed
- Control of tip is not intuitive, requires practice
- Working environment is crowded and visibility is poor
- Expensive surgeries with unnecessarily long hospital stays
- Other devices are not specialized, too expensive or don't have the functionality for a full system.

Goal

Goal

Design, build, and test a clinical quality prototype robotic throat tumor ablation system to aid in performing minimally invasive intra-airway surgery done potentially as an outpatient procedure under local or weak general anesthesia.

- Reduce number of hands needed
- Control all motion of endoscope
- Allow for use of one hand to control system leaving surgeon free to hold tool in other
- Have scope remain stationary with no hands

Goal

Our Approach

- Design and build a 3 axis robotic assistance device
 - Single hand operation for laser/scope
 - Precision movement
 - Laser and scope remain stationary when hands removed
 - Use pre-existing clinical endoscope and laser to minimize cost

Deliverables

Minimum

Functioning system capable of performing mock operations with phantoms

Expected

- System capable of performing extensive cadaver experiments demonstrating functionality of system
- User interface able to control and adjust system
- Extensive documentation
- System able to pass clinical engineering standards

Maximum

Image Processing and new input device

Current Status

- Completed
 - Hardware
 - Clinical Testing
- In Progress
 - Software
 - Documentation
- To Be Done
 - Testing

Goal

Prototype

Timeline

Initial Cadaver Trials

Software

- Utilizes CISST libraries
- Controls each axis of motion separately
- Contains software safety features and limits
- GUI
 - alternative way to move robot
 - adjust speed and other variables
 - visualization/debug feature

Software

Task Overview

Main Program

Configure and Initialize

Robot Run

Background

Safety Features

Redundant Sensing Homing/Limit Switch

Update Actuator State Check Pot and Value

Get Analog Inputs

Increment timer

Get Space Mouse Data

Get Joint Position

Get Potentiometer Data

Positions match?

Move joint

Goal

Galil Heartbeat

Input Device

Commercial USB joysticks offer enough degrees of freedom

Goal

- Microsoft DirectInput SDK can be interfaced with C++
- Need to Integrate the SDK library into code to work with CISST libraries in order to replace Space Mouse

Documentation Plan

Milestones		March			April				May					
		11	18	25	01	08	15	22	29)	06	13	20	27
Requirements Documentation									_					
Design Documentation)					Rec	quiren	nents	
Architecture Documentation											Arc	hitect	ure	
Device Code Documentation		(Technical				
Robot Code Documentation									П	User				
GUI Documentation											Fina	al Upo	date	
Mechanical Plan/ Diagrams									П					
Electrical/ Wiring Diagrams														
End-User Manual														
Code Documentation Final Update														
Hardware Manual Final Update														
Administrator Manual														

Approach

Conclusion

Background

Requirements Documentation

- Functional Requirements
 - Use Cases
 - UML Diagram
- Non-functional Requirements
 - Safety features to prevent failure of system
 - Extensive Documentation
- Constraint Requirements

Sample Use Case

- Title: Robot Move
- Actors: Space Mouse (Input Device-Surgeon), Computer, Galil Motion Controller, **Actuators**
- Goal: Should take input from the Space Mouse and translate to direct movement of one axis of the robot (actuator)
- Pre-Condition: Robot Program is started and robotTask::Run() is called
- Main Path:
 - 1) Get Digital (Encoder) Actuator Data and update states
 - 2) Get Space Mouse Data
 - 3) Get Analog Inputs (Potentiometer)
 - 4) Compare Analog and Digital Inputs If different, cut power to the motors and show error
 - 5) Find Space Mouse Axis with Greatest Difference from Resting Position
 - 6) Check Sign of Desired Axis
 - 7) Set desired Position of Axis using Appropriate Sign
 - 8) Write to Appropriate Logs
 - 9) Update GUI
 - 10) Send Command to Galil to Move

Sample Diagrams

Architecture Documentation

- Design Document
- Views
 - Functional
 - Process
 - Logical
 - Design
 - Interface
 - Operational

Technical Documentation

Use Doxygen to generate code documentation

User Documentation

- Mechanical Diagrams and Specifications
- Wiring Diagrams and Electrical Specifications
- User Manual that shows:
 - Hardware specifications
 - Software Overview and Tutorial
 - Extensive Code documentation

Failure Mode and Effects Analysis

					Occurrence		Detection	CRIT (critical	RPN (risk priority
Function	Failure Mode	Effects	Severity	Cause(s)	rating	Current Controls	Rating	characterstic)	number)
						Galil Reads if Limit			
		Damage to joint and		Disconnected or		Switch has been			
Limit Switch	Connection Fails	danger to patient	4	Power error	2	triggered	2	N	16
LITTIC SWITCH	Connection rails	uanger to patient	4	rower error		triggereu	2	IN	10
		Loss of redundant							
		sensing, possible				Read in through Galil			
		imprecision in		Disconnected or		analog input, compared			
Potentiometer	Connection Fails	movement	4	Power error	3	to digital encoder data	2	N	24
		Loss of position data,				Read in through Galil			
		motor may run away		Connection or	_	digital input, compared			
Encoder	Connection Fails	and harm patient	7	Power error	2	to analog pot data	1	Y	14
		Joint is no longer				Galil sends power			
		controlled and can		Incorrect output		through laptop			
Motor Power	Runs Away	run into patient	8	from Galil	4	commands	2	Υ	64
Motor		Motor causes slipping							
Mechanics	Slipping	in joints	7	?	3	?	4	γ	84
Meenanes	Silphing	iii joiiles			- J				Ü.
					_	Limit Switches cut power			
Joint Jam	High Forces	Joint stops moving	7	High Forces	2	to joint before jam	3	Y	42
		No communication							
		between user and							
Ethernet	Connection Fails	Robot	6	Disconnected	3	?	1	Υ	18
		No communication		Program Crashes,		Galil checks to see if			
	Crashes or	between user and		Power Error,	_	Laptop continues to		.,	40
Laptop	Connection Fails	Robot	8	Computer error	5	communicate	1	Y	40
		No communication				Laptop checks to make			
		between user and				sure an input device is			
Input Device	Connection Fails	robot via input device	5	Disconnected	2	detected	1	Υ	10
						Galil checks to see if			
						Laptop continues to			
Program	Crashes or Errors	No control to robot	8	Error in Code	6	communicate	1	Υ	48
ogrunn	c. addica of Entols		<u> </u>	21101 III Code	, i				70
	l					Laptop checks to see if			
	Crashes or					Galil continues to			
Galil	Connection Fails	No control to robot	9	?	5	communicate	1	Υ	45
						Galil checks to see if			
	Crashes or	Possible error with				Arduino continues to			
Arduino	Connection Fails	Galil	3	?	5	communicate	2	N	30

Testing Plan

- Clinical Engineering Standards (waterproof, grounded, chemical resistant, etc..)
- Clinical Testing
 - Phantom Evaluation
 - Initial Cadaver Study
 - Final Cadaver Study
 - IRB Application
- Hardware Testing
- Software Testing

Goal

Milestones

Milestones	Planned	Expected	On time	Delayed	Done
Motor Installation	02/20	02/20			√
Arduino Installation	04/10	04/10	1		
Control Loop	03/01	03/01			✓
Redundant Sensor Integration	03/21	03/21			✓
Backlash Compensation	04/08	04/08	1		
Galil Power Limits	04/03	04/06		✓	
Force Limits	04/06	04/06	1		
Incremental Position Control	03/28	03/28			✓
Arduino-Galil Handshake	04/16	04/16	1		
Galil- Laptop Heartbeat	03/16	03/16			✓
Galil-Arduino Handshake	04/16	04/16	1		
Laptop-Ethernet Failure	04/10	04/10	1		
Redundant Sensor/Encoder Failure	04/28	04/15	1		
Limit Switch Failure	04/09	04/09	1		
Input Device Failure	04/20	04/20	1		
GUI Creation	03/30	04/05		✓	
GUI Integration	04/16	04/12	1		
Design Documentation	04/20	04/20	1		
Code Documentation	04/18	04/01			✓
Electrical Documentation	03/20	03/20			✓
User/System Documentation	05/15	05/15	1		
Input Device	04/30	04/30	1		
Clinical Testing	03/10	03/10			✓
Hardware Testing	05/10	05/10	1		
Software Testing	05/10	05/10	1		

Dependencies

Dependency	Plan to Resolve	Resolve By	Affects
Cadavers Required	MISTIC Lab Training	Resolved	Expected
Surgeon Feedback	Scheduled Meetings	Resolved	Minimum
New Space Mouse	Order new mouse	Resolved	Minimum
New Translation Motor	Order new motor	Resolved	Maximum
Mechanical Work	Have Kevin finish	Resolved	Expected
Funding	Submit budget proposal	Resolved	Maximum
New Input Device	Find an alternative	April 6	Maximum
Documentation Review	Dr. Kazinzides	April 20	Expected
QT toolkit/RobotGUI task	Talk to Marcin, Dr. Kazinzides	Resolved	Maximum

Future Work

- Integrate Arduino
- Finish Safety Limits
- Finish final GUI Integration
- Finish Documentation
- Testing

Management Plan

- 25 hours per week on project (Liz)
- 5 hours per week on project (Kevin)
- Reassess deliverables at each milestone
- Meeting Schedule
 - Weekly meeting with Dr. Taylor
 - Monthly meeting with Dr. Richmon

Questions?

