

Robotic Endoscopic Tumor Ablation System

Kevin Olds, Liz Cha

Mentors: Dr. Russell Taylor

Sponsor: Dr. Jeremy Richmon

Motivation

- There are approximately 25,000 new cases of throat cancer every year in the US, resulting in approximately 6,000 deaths per year
- Radiation and chemotherapy have many undesirable side effects, especially in a sensitive and critical area like the throat
- Surgical approaches are often used to treat throat cancer

Tonsil

Epialottis

Surgical Techniques

- Types of surgical techniques in throat surgery:
 - Through incisions in the patient's neck
 - Inside the airway using an endoscope and specialized surgical tools including a cutting laser

Pros and Cons of Intra-Airway

- Advantages of Intra-Airway
 - Less risk of infection
 - Less scarring
 - Smaller risk of complications (damaged vocal cord nerves, etc.)
 - Faster recovery time
- Disadvantages of Intra-Airway
 - Limited visibility

Background

Limited working room

Current Intra-Airway Surgery at JHMI

- Minimum of 4 hands needed:
 - Laser and endoscope are separate instruments
 - Endoscope needs two hands to operate

Goal

- 3rd grabbing instrument is needed
- Laser is rigid and cannot bend around corners
- Scope does not remain stationary when hands removed and is difficult to control accurately
- Result: working environment is crowded and awkward and visibility is poor

Problem

- Current methods for throat tumor removal require multiple surgeons, risky/expensive surgeries with general anesthesia, and unnecessarily long hospital stays
- Other devices are not specialized, too expensive or don't have the functionality for a full system.

Goal

Design, build, and test a clinical quality prototype robotic throat tumor ablation system to aid in performing minimally invasive intra-airway surgery done potentially as an outpatient procedure under local or weak general anesthesia.

- Reduce number of hands needed
- Control all motion of endoscope
- Allow for use of one hand to control system leaving surgeon free to hold tool in other
- Have scope remain stationary with no hands

Solution

- Use a robotized endoscope with:
 - Single hand operation for laser/scope, leaving the other hand to use tissue manipulators
 - Built-in working channel for cutting laser
 - Precision movement
 - Laser and scope remain stationary when hands removed
 - Use pre-existing clinical endoscope and laser to minimize cost

Our Approach

- Design and build a 3 axis robotic assistance device
- Uses a laptop for surgeon to control system

Constraints and Design Issues

- Resistant to long term exposure to hospital grade cleaning agents
- Cannot contain any allergens or toxic materials
- Submersion proof
- Well grounded
- Should not have a lot of mass over the patient
- As few visible moving parts as possible
- Corrosion resistant seals
- All exposed metal parts must be stainless steel, aluminum, or plastic
- Robot must be able to resist bumps and minor abrasions

Deliverables

Minimum

Functioning system capable of performing mock operations with phantoms

Expected

- System capable of performing extensive cadaver experiments demonstrating functionality of system
- User interface able to control and adjust system
- Extensive documentation
- System able to pass clinical engineering standards

Maximum

Image Processing and new input device

Prototype I

Hardware

- Three coreless brushed servo motors with planetary gearheads
- Integrated magnetic encoders
- Linear potentiometers for redundant sensing
- Galil Motion Controller (DMC-4030) with 20 W linear amplifiers
- Waterproof exterior
- +/-12 V isolated power supply

Goal

Current Status

- Initial proof of concept prototype using LARS completed
- Clinical prototype 1.0 completed

Goal

 This presentation covers the upgrades to transition Clinical prototype 1.0 to clinical prototype 2.0

Upgrades

- Rotation stage motor/gearhead
 - More torque
 - Better control
 - Smoother, more regular motion
- Scope handle motor upgraded to fit in enclosure with scope handle manipulator
 - Eliminates mechanical cable
 - Reduces backlash
 - Frees up room for rotation stage motor upgrade

Upgrades (2)

- Bicycle cable to low-stretch aircraft-grade rubber coated cable
- Use handles to adjust robot instead of wrench
- Robust locking electrical connectors
- Screw driven one-site-adjustment removable cable tensioner
- Adjustable latch for holding scope

Prototype 2.0

Galil Box

Background

Translation Box

Rotation Box

Scope Box

Summary

- Parts in final robot
 - Parts machined by me: 70+
 - Parts machined by Rich: 7
- Total parts machined
 - By me: 100+
 - By Rich: 9
- Total solder connections: 300+
- Robot tested to be operable under water
- Robot tested on human cadavers and shown to improve surgical performance
- Unplug-carry-plug-play portability
- Easily accepts other comparable scopes

Goal

Future Work (Hardware)

- Arrange informal clinical engineering evaluation in preparation for IRB application
- Fine-tune pot feedback and possibly add further filtering
- Develop detailed testing and failure detection plan
- Design and build support arm for robot
- Design and build tower containing robot electronics, scope interrogator, video processing PC, and mount for robot

Lessons Learned

- Mechanical cables are a huge pain without a good tensioner (and a moderate pain with one)
- Gearheads have more backlash than you would like
- Using one big electrical cable is annoying for fabrication, but great to work with and well worth the investment
- Aiming for a more robust initial design with upgrades in mind is a good idea for a prototype
 - Don't waste time repairing trivial problems
 - Transport and setup are much easier

Software

- Utilizes CISST libraries
- Controls each axis of motion separately
- Contains software safety features and limits
- **GUI**
 - alternative way to move robot
 - adjust speed and other variables
 - visualization/debug feature

Software

Main Program/ Functions

Tasks

Goal

GUI

Robot	Status
	Power
	Homing
	Connected
	Translation
	Rotation
	Tool Tip
	Actuator Position
Speed	
Translation 100%	
Rotation 100%	
Tool Tip 100%	

Testing Plan

- Clinical Engineering Standards (waterproof, grounded, chemical resistant, etc..)
- Phantom Evaluation
- Initial Cadaver Study
- Final Cadaver Study

Initial Cadaver Trials

Dependencies

Dependency	Plan to Resolve	Resolve By	Affects		
Cadavers Required	Have Surgeons Order	Resolved	Expected		
Surgeon Feedback	Schedule Meeting	Resolved	Minimum		
New Space Mouse	Order new mouse	Resolved	Minimum		
New Translation Motor	Order new motor	Resolved	Maximum		
Mechanical Work	Have Kevin finish	February 16	Expected		
Funding	Submit budget proposal	Resolved	Maximum		
New Input Device	Find an alternative or build alternative	April 1	Maximum		
Electronics Equipment	Ask Dr. Taylor	March 9	Expected		
QT toolkit/RobotGUI task	Talk to students in Lab March 1		Maximum		

Timeline and Milestones

Milestones		February		March			April					May			
Willestolles	04	11	18	25	04	11	18	25	01	08	15	22	29	06	13
Project Plan															
Project Plan Presentation															
Install Rotation Motor (B)															Ц
Tune Motors/Control Loop												Plar			
Redundant Sensor Integration												Hardware			
Backlash Compensation												Safety GUI/Documentation Input Device Testing Wrap Up			
Galil Power Limits															n _
Force Limits															
"Heartbeat" Program															
Software Safety Features															
GUI															
Documentation															
Find New Input Device															
Create Interface For New Input Device															
Phantom Test															
Initial Cadaver Trials															
Updates															
Final Cadaver Trials															
Project Final Report															
Project Final Presentation															

Conclusion

Goal

Management Plan

- 25 hours per week on project (Liz)
- 10 hours per week on project (Kevin)
- Reassess deliverables at each milestone
- Meeting Schedule
 - Weekly meeting with Dr. Taylor
 - Monthly meeting with Dr. Richmon

Budget

Items	Budget Allocation
Scope	\$22,000
Scope interrogator	\$2,000
Salary (Kevin Olds)	\$33,000
Hardware	\$12,000
Theta-stage	\$2,000
Z-stage	\$2,000
 Motor Controller 	\$2,000
Motors/Encoders	\$1,500
Misc. Shop Materials	\$500
Computer/accessories	\$1,000
Machinist Fees	\$1,000
Phantom Costs	\$500
Enhancements	\$2,900
Phantom Study	\$925
Clinical Engineering	\$2,875
Cadaver Study	\$11,875
Total	\$87,575

Background

Questions?

