
Guide for compiling the cisst library for iOS:

1. Modify the CMakeList.txt to include new settings specific for iOS. Add the
following line to the end of the file:

INCLUDE(iphone.cmake)

2. Create the file iphone.cmake in the same folder. This file essentially sets the paths
for the necessary compilers and architectures. Modify the versions as necessary.
Code:

SET (CMAKE_SYSTEM_PROCESSOR arm CACHE STRING "" FORCE)
SET_PROPERTY(GLOBAL PROPERTY TARGET_SUPPORTS_SHARED_LIBS TRUE)

SET (SDKVER "4.2" CACHE STRING "" FORCE)
SET (DEVROOT
"/Developer/Platforms/iPhoneOS.platform/Developer" CACHE
STRING "" FORCE)
SET (SDKROOT "${DEVROOT}/SDKs/iPhoneOS${SDKVER}.sdk" CACHE
STRING "" FORCE)
SET (CMAKE_INSTALL_PREFIX "../ipadlib" CACHE PATH "" FORCE)
SET (CMAKE_OSX_SYSROOT "${SDKROOT}" CACHE PATH "" FORCE)
SET (CMAKE_OSX_ARCHITECTURES "armv7" CACHE STRING "" FORCE)

SET (CMAKE_C_COMPILER "${DEVROOT}/usr/bin/gcc-4.2" CACHE
FILEPATH "" FORCE)
SET (CMAKE_CXX_COMPILER "${DEVROOT}/usr/bin/g++-4.2" CACHE
FILEPATH "" FORCE)

SET (CMAKE_C_FLAGS "-std=c99" "-x objective-c" CACHE STRING ""
FORCE)
SET (CMAKE_C_FLAGS_DEBUG ${CMAKE_C_FLAGS} "-DDEBUG=1" "-ggdb"
CACHE STRING "" FORCE)
SET (CMAKE_C_FLAGS_RELEASE ${CMAKE_C_FLAGS} "-DNDEBUG=1" CACHE
STRING "" FORCE)
SET (CMAKE_C_FLAGS_RELWITHDEBINFO ${CMAKE_C_FLAGS} "-
DNDEBUG=1" "-ggdb" CACHE STRING "" FORCE)

SET (CMAKE_CXX_FLAGS "-x objective-c++" CACHE STRING "" FORCE)
SET (CMAKE_CXX_FLAGS_DEBUG ${CMAKE_CXX_FLAGS} "-DDEBUG=1" "-
ggdb" CACHE STRING "" FORCE)
SET (CMAKE_CXX_FLAGS_RELEASE ${CMAKE_CXX_FLAGS} "-DNDEBUG=1"
CACHE STRING "" FORCE)
SET (CMAKE_CXX_FLAGS_RELWITHDEBINFO ${CMAKE_CXX_FLAGS} "-
DNDEBUG=1" "-ggdb" CACHE STRING "" FORCE)

ADD_DEFINITIONS("-arch armv7")
ADD_DEFINITIONS("-pipe")
ADD_DEFINITIONS("-no-cpp-precomp")
ADD_DEFINITIONS("--sysroot=${SDKROOT}")
ADD_DEFINITIONS("-miphoneos-version-min=${SDKVER}")

INCLUDE_DIRECTORIES(SYSTEM "${SDKROOT}/usr/include")
LINK_DIRECTORIES("${SDKROOT}/usr/lib")

SET (CMAKE_FIND_ROOT_PATH "${SDKROOT}" CACHE PATH "" FORCE)
SET (CMAKE_FIND_ROOT_PATH_MODE_PROGRAM BOTH)
SET (CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
SET (CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)

SET (iPhone 1)
SET (iPhoneOS 1)
SET (iPhoneOS_VERSION ${SDKVER})

3. Use cmake to compile the source code with the newly added cmake settings from

the previous step. When make install is performed, the built libraries and
include files should be in a folder named ipadlib.

4. In XCode, add the compiled libaries (.a files in the ipadlib/lib folder) to the

target application.

5. In the Target Info, add the folder ipadlib/lib to the “Library Search Paths”
(should be done automatically with step 4).

6. In the Target Info, add the folder ipadlib/include to the “Header Search

Paths”.

7. Build the target as you would normally for a project.

Important Notes:

1. While there is a version of ICE designed for iOS, you must use the C++
version. Otherwise, ICE won’t be able to communicate with the cisst library.

2. All class files for the GUI components need to have the extension .mm

(Objective C++). Since the cisst library is written in C++, we must use
Objective C++ to communicate between the GUI and the library.

