Seminar Presentation

Automatic image-to-world registration based on x-ray projections in cone-beam CT-guided interventions

Hao Dang 2/24/2011

Project: Integration of CBCT and a skull base drilling robot

Paper selection and reason

- Name: Automatic image-to-world registration based on x-ray projections in cone-beam CT-guided interventions
- Authors: Hamming NM, Daly MJ, Irish JC, and Siewerdsen JH
- Journal: Medical Physics
- Publish time: April 2009

Reason:

- Illustrate important background on CBCT
- Bring innovation on a typical registration problem discussed in CIS1
- Have potential to be used in my project

Problem, key result, significance

Manual registration: Bottleneck, fail

Solution: automatic registration

navigation

- New marker design: visible to both tracker and X-ray
- Automatic marker-segmenting algorithm
- Automatic paired-point registration
- Key result: Equivalent or superior accuracy and reproducibility
- Significance: eliminate burden of manual registration on surgical workflow!

Fig1: Images are from An integrated system for planning, navigation and robotic assistance for skull base surgery. Tian Xia, Peter Kazanzides, etc*. The International Journal of Medical Robotics and Computer Assisted Surgery, Volume 4, Issue 4, pages 321–330, December 2008. Fig2: http://www.thebarrow.org/Education_And_Resources/Barrow_Quarterly/205222.
Fig3: http://www.tech-ex.com/jsp/equipment/products/premium/ndi.jsp Fig4: Automatic image-to-world registration based on x-ray projections in cone-beam CT-guided interventions. Hamming NM, Daly MJ, Irish JC, Siewerdsen JH. Med Phys. 2009 May;36(5):1800-12. (From left to right)

Background/Material: CBCT

- Two modifications to common C-Arm:
 - Motorization of C-Arm orbit: ~200 projections
 - Large area Flat Panel Detector(FPD)
 - 20*20*15 cm
 - Soft tissue visibility
- Imaging capability
 - Acquisition: ~60 sec. 0.194mm->0.388mm
 - Reconstruction: ~20 sec. 256*256*192 voxel
- Geometric calibration

Voxel coordinate in 3D image

Pixel position in 2D projection domain

Multi-Modality marker

- 5.8mm radius reflective marker—Tracker
- 1.0mm radius tungsten BB marker—CT
 Two centers are coincident within 0.15-0.04mm

- Marker placement
- (1) MM markers (automatic)
 - 8 on skin surface (traditional)
 - 8 on a curved plate (novel, no need of fixing markers to skin surface)
- (2) Divot markers (manual)
 - 8 as fiducials (adjacent MM, skin/plate)
 - 4 as targets (skin)

Theory

Automatic registration algorithm

Registration: Rigid point-based method involving unit quaternions, by Horn, CIS1

Segmentation of BB markers in 2D projections

Intensity threshold -> detect regions of high attenuation

Pattern matching (2-5 pixels radius circle)

Exclude false positive by consistency of presence

- Search windows: 20*20 pixels
- Edge search windows: 30 pixels width

Localization of BB markers in 3D image coordinates

Real detector coordinate

Virtual detector coordinate

Detector pixel coordinate

laboratory bench

From detector pixel coordinate system to image coordinate system

Pixel to Real
$$(U,V) \rightarrow P$$

$$P^{r}(x) = -a_{u}(U^{p} - U_{o}^{p}),$$

$$P^{r}(y) = -a_{v}(V^{p} - V_{o}^{p}),$$

$$P^{r}(z) = 0,$$

- Real to Image $P^{l} = R_{i}^{l}R_{r}^{i}P^{r} + T_{i}^{l}$,

• Linear least square
$$\sum_{i=m}^{n} d_{j}^{2} = \sum_{i=m}^{n} a_{i}x^{I^{2}} + b_{j}y^{I^{2}} + c_{j}z^{I^{2}} + e_{j}x^{I}y^{I} + f_{j}x^{I}z^{I} + g_{j}y^{I}z^{I}$$

$$+ h_j x^I + k_j y^I + l_j z^I + q_j,$$

$$X\beta = y \ni X = \begin{bmatrix} \sum_{j} 2a_{j} & \sum_{j} e_{j} & \sum_{j} f_{j} \\ \sum_{j} e_{j} & \sum_{j} 2b_{j} & \sum_{j} g_{j} \\ \sum_{j} f_{j} & \sum_{j} g_{j} & \sum_{j} 2c_{j} \end{bmatrix} \quad \beta = \begin{bmatrix} x^{I} \\ y^{I} \\ z^{I} \end{bmatrix}, \quad y = \begin{bmatrix} \sum_{j} h_{j} \\ \sum_{j} k_{j} \\ \sum_{j} l_{j} \end{bmatrix}, \quad \hat{\beta} = (X^{t}X)^{-1}X^{t}y, \quad \hat{\beta} = (X^{t}X$$

Experiment method

Manual registration

```
(divot) image point-set: manually segment (true location) tracker point-set
```

Automatic registration

• Ten times for each registration -> mean and standard deviation

Marker configuration

Novel configuration on curved plate:

- (1) Overcome the lack of rigid anatomy
- (2) Centroid nearer to subcranium target
- (3) Surgically unobtrusive

Image point-set localization accuracy

Localization error

- •In-FOV: 0.39 ± 0.11 mm
- Out-FOV:

•Cloud: 0.86 ± 0.16 mm

 \bullet 45-180: 0.67 \pm 0.21mm

 \bullet 45-135: 0.63 \pm 0.11mm

Time:

In-FOV: 30s

Out-FOV: 20s

Automatic vs. manual registration(1)

FRE: <u>fiducial</u> registration error

Result

```
Lower FRE automatic: 0.3-0.4mm manual: 0.5-0.8mm (agree with previous studies) Greater reproducibility
```

Automatic vs. manual registration(2)

• TRE: <u>target</u> registration error

Result

Not statistically \int automatic: 1.14 \pm 0.20mm significant \int manual: 1.29 \pm 0.34mm

Greater reproducibility

The TRE here is experiment-based, not theoretical.

Conclusion

- The automatic technique demonstrates equivalent or superior performance to manual one replace manual
- Various out-FOV configurations exhibits similar TRE to in-FOV ones

design novel marker plate

Head

Assessment

- Importance: bring innovation to typical image-to-world registration in computer integrated surgery field
- Relevance to me: Integrate into our CBCT-Robot system, may put it in parallel with CBCT reconstruction
 Curved plate
- Challenges to this paper:
 - Can update registration only after a CBCT imaging
 - Based on Matlab, low software portability
 - Segmentation parameters requires pre-knowledge.
 - In some cases, markers are not segmented due to interference from overlying bony anatomy.

Thank you!

Q&A