# Review of methods for objective surgical skill evaluation

Group 4

Vishwa Parekh

Mentors: Dr. Gregory Hager, Daniel Mirota, Narges Ahmidi

## Project Background

Goal: Develop a mathematical model for surgical skill evaluation in endoscopic sinus surgery.

Input: Series of Surgical movements

**Output: Surgical Skill Level** 



CIS1 Lecture slides on registration

#### Paper

C. Reiley, H. Lin, D. Yuh, and G. Hager, "Review of methods for objective surgical skill evaluation," Surgical Endoscopy, pp. 1-11, 2010.

#### Why this paper?

- Survey on all the background work and state of the art.
- Serves as a good starting point to dive into the topic of surgical skill evaluation.

#### A four throw suturing task



[C. Reiley, H. Lin, D. Yuh, and G. Hager, "Review of methods for objective surgical skill evaluation," Surgical Endoscopy, pp. 1-11, 2010.]



[C. Reiley, H. Lin, D. Yuh, and G. Hager, "Review of methods for objective surgical skill evaluation," Surgical Endoscopy, pp. 1-11, 2010.]

#### **Data Collection**

- In order to evaluate motion, we need good data collection methods.
- The skills required for an open surgery are different that those required for minimally invasive surgery.
- Different surgical procedures will require different methods of data collection

#### **Data Collection**



#### **Data Collection**



## Data Modeling



Position, Velocity and often Force, Torque

Not good enough to differentiate an expert from a novice.

Different surgical movements analogous to different words in a dictionary.

Difference in pronunciations



Difference in Skill Level

#### Language Models

- The Language models can be formed at three different levels:
  - Procedure Level: This includes the complete surgical intervention. This model would be able to provide effectiveness of the surgical procedure but will not be able to comment on the surgeon's skill level.
  - Task Level: This includes different tasks in a surgical procedure like Suturing or Dissection.
  - Surgeme Level: This includes subtasks like needle insertion, position needle, reach for the needle, etc.

## Segmentation of surgical procedure into tasks/subtasks before modeling

- Manual Segmentation
- Automatic Segmentation
  - Feature Processing
  - Linear Discriminant Analysis
  - Bayes Classification

## Hidden Markov Modeling

- 3 Models Expert/Intermediate/ Novice
  - Transition states are various tasks/subtasks
  - Emissions: feature vectors
- Each of these models are trained using forward backward algorithm using training data from different skill levels.
- Now when given a sequence of unknown skill level, the sequence is fed into each of the models and the models with highest log likelihood wins.

## Sequence Matching

- A sequence of gestures is encoded for an expert surgeon
- When given a new sequence of gestures, sequence alignment score is calculated to indicate the skill level of the surgeon.

#### Conclusions

- Interesting Review.
- Provides a great background and an overview of abundance of approaches to surgical skill evaluation.
- Will be implementing Hidden Markov Modeling for my Project.

## Thank you

• Questions?