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systems are specially addressed. 
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Abstract-A nonlinear black-box structure for a dynamical 
system is a model structure that is prepared to describe 
virtually any nonlinear dynamics. There has been con- 
siderable recent interest in this area, with structures based on 
neural networks, radial basis networks, waveiet networks and 
hinging hyperplanes, as well as wavelet-transform-based 
methods and models based on fuzzy sets and fuzzy rules. This 
paper describes all these approaches in a common 
framework, from a user’s perspective. It focuses on what are 
the common features in the different approaches, the choices 
that have to be made and what considerations are relevant 
for a successful system-identification application of these 
techniques. It is pointed out that the nonlinear structures can 
be seen as a concatenation of a mapping form observed data 
to a regression vector and a nonlinear mapping from the 
regressor space to the output space. These mappings are 
discussed separately. The latter mapping is usually formed as 
a basis function expansion. The basis functions are typically 
formed from one simple scalar function, which is modified in 
terms of scale and location. The expansion from the scalar 
argument to the regressor space is achieved by a radial- or a 
ridge-type approach. Basic techniques for estimating the 
parameters in the structures are criterion minimization, as 
well as two-step procedures, where first the relevant basis 
functions are determined, using data, and then a linear 
least-squares step to determine the coordinates of the 
function approximation. A particular problem is to deal with 
the large number of potentially necessary parameters. This is 
handled by making the number of ‘used’ parameters 
considerably less than the number of ‘offered’ parameters, by 
regularization, shrinking, pruning or regressor selection. 
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1. INTRODUCTION 

The key problem in system identification is to 
find a suitable model structure within which a 
good model is to be found. Fitting a model 
within a given structure (parameter estimation) 
is in most cases a lesser problem. A basic rule in 
estimation is not to estimate what you already 
know. In other words, one should utilize prior 
knowledge and physical insight about the system 
when selecting the model structure. It is 
customary to distinguish between three levels of 
prior knowledge, which have been ‘color-coded’ 
as follows. 

l White-box models. This is the case when a 
model is perfectly known; it has been 
possible to construct it entirely from prior 
knowledge and physical insight. 

l Grey-box models. This is the case when some 
physical insight is available, but several 
parameters remain to be determined from 
observed data. It is useful to consider two 
subcases. 

6) 

(ii) 

Physical modeling. A model structure 
can be built on physical grounds, which 
has a certain number of parameters to 
be estimated from data. This could, for 
example, be a state-space model of 
given order and structure. 
Semiphysical modeling. Physical insight 
is used to suggest certain nonlinear 
combinations of measured data signal. 
These new signals are then subjected to 
model structures of black-box character. 

l Black-box models. No physical insight is 
available or used, but the chosen model 
structure belongs to families that are known 
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to have good flexibility 
‘successful in the past’. 

1.1. Black-box models 
For black-box linear models, 

J. Sjijberg et al. 

and have been 

the task is really 
to describe/approximate the system’s frequency 
response (or impulse response), which is just a 
mapping from R to [wP” (where p is the number 
of outputs and m the number of inputs). With 
the typically ‘nice’ such functions that dominate 
applications, this is a rather modest approxima- 
tion problem, which has been extensively and 
successfully handled within some well known 
linear black-box structures. Some typical such 
structures will be reviewed in Section 3.1. 

The nonlinear black-box situation is much 
more difficult. The main reason is that nothing is 
excluded, and a very rich spectrum of possible 
model descriptions must be handled. In this 
paper we shall discuss the possibilities and 
limitations with such nonlinear black-box iden- 
tification. The area is quite diverse, and covers 
topics from mathematical approximation theory, 
via estimation theory and non-parameteric 
regression, to algorithms and currently much 
discussed concepts like neural networks, wauelets 
and fuzzy models. There are important links to 
classical statistical approaches in non-parametric 
regression and density estimation, with kernel 
methods and nearest-neighbor techniques. There 
is also a rich literature on the subject. Among 
many general treatments we may refer to books 
on neural networks, such as Kung, (1993) and 
Haykin (1994), to books on fuzzy models, like 
Brown and Harris (1994) and Wang (1994), to 
books and surveys on non-parametric regression 
and density estimation, like Stone (1982), 
Silverman (1986) and Devroye and Gyorfi 
(1985), and to background material on wavelets 
and multiresolution techniques, like Meyer 
(1990), Daubechies (1992) Chui (1992) and 
Ruskai et al. (1992). 

1.2. Organization of this paper 
This paper will take the position of a practical 

user of nonlinear black-box models, describe 
what are the essential features of the available 
approaches, and discuss the issues he or she most 
deal with to successfully arrive at a good model 
from given observed data. The paper has a 
companion in this special issue (Juditsky et al., 
1995) that complements the material with more 
theoretical aspects. Each of the two papers can, 
however, be read independently. 

The present paper is organized as follows. We 
shall first look into the modeling question and 
find that the general nonlinear black-box model 

can be seen as a concatenation of a mapping 
from past observed data to a regressor space, 
and from there by a nonlinear, function 
expansion type, mapping to the space of the 
system’s outputs, This is done in Section 2. The 
two mappings are then dealt with separately in 
Sections 3 and 4 respectively. 

After an intermission to check our bearings, 
we then discuss basic model properties in Section 
6, giving important insights in how to deal with 
the potentially large number of parameters 
required to handle arbitrary nonlinear dynamical 
systems. Estimation techniques based on crite- 
rion optimization and direct methods are dealt 
with in Sections 7 and 8, respectively. How fuzzy 
modeling fits into our general framework is then 
discussed in Section 9. Several numerical 
examples with real data are given in Section 10, 
and the user choices and attitudes are discussed 
in Section 11. 

1.3. Glossary 
We take in this paper a rather classical, 

statistical approach to the problem. Many earlier 
treatments, in particular on neural networks and 
fuzzy models, have had other perspectives, and 
developed special terms for traditional statistical 
concepts. We therefore provide a glossary of 
commonly used terms: 

estimate = train, learn; 
validate = generalize; 
model structure = network; 
estimation data = training set; 
validation data = generalization set; 
overfit = overtraining. 

2. NONLINEAR BLACK-BOX STRUCTURES 

The system identification problem is as 
follows: We have observed inputs u(t) and 
outputs y(t) from a dynamical system 

u’ = [u(l) U(2) . . . u(t)], (1) 

y’= [Y(l) Y(2) . . * YG)l* (2) 

We are looking for a relationship between past 
observations [u’-I, y’-‘1 and future outputs y(t): 

y(t) = g(P, y’-1) + u(t). (3) 

The additive term u(t) accounts for the fact that 
the next output y(t) will not be an exact function 
of past data. However, a goal must be that u(t) is 
small, so that we may think of g(u’-‘, y’-‘) as a 
good prediction of y(t) given past data. 

Equation (3) models general discrete-time 
dynamic systems. Since static systems can be 
viewed as a particular case of dynamic systems, 
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we mainly focus on dynamic systems in this 
paper. 

Now, how do we find the function g in (3)? In 
some way or another we have to search for it 
within a family of functions. Let us parameterize 
this function family with a finite-dimensional 
parameter vector 8: 

g(uf-~‘, yf-‘, e>. (4) 

Parameterizing the function g with a finite- 
dimensional vector 8 is usually an approxima- 
tion. Indeed, the main topic of this paper is how 
to find a good such parameterization and how to 
deal with it. Once we have decided upon such a 
structure and have collected a data set [#, y”], 
the quality of 8 can naturally be assessed by 
means of the fit between the model and the data 
record: 

(5) 
[=I 

Now, the model structure family (4) is really 

The norm and the actual way of achieving or 
trying to achieve the minimum in 0 may differ, 

too general, and it turns out to be useful to write 

but most system identification schemes follow 

g as a concatenation of two mappings: one that 

this concept. 

takes the increasing number of past observations 
u’, y’ and maps them into a finite-dimensional 
vector q(t) of fixed dimension and one that takes 
this vector to the space of the outputs: 

g(u’-‘, y’-‘, 0) = g(cp(t), e), (6) 
where 

cp(t) = (p(u’-1, y’-1). (7) 

We shall call this vector the regression vector, 
and its components will be referred to as 
regressors. We also allow the more general case 
that the formation of the regressors is itself 
parameterized: 

qo(t) = (PV’, y’-‘2 771, (8) 

which we write for short as cp(t, 77). Sometimes 
77 = 8, i.e. the regression vector depends on all 
the model parameters. For simplicity, the extra 
argument 7 will, however, be used explicitly only 
when essential for the discussion. 

The choice of the nonlinear mapping in (4) has 
thus been decomposed into two partial problems 
for dynamical systems: 

(i) how to choose the regression vector q(t) 
from past inputs and outputs; 

(ii) how to choose the nonlinear mapping g(cp) 
from the regressor space to the output space. 

We shall address the possibilities for these two 
choices in the following two sections. 

3. REGRESSORS: POSSIBILITIES 

To get some guidance about the choice of 
regressors, let us first review the linear case. 

3.1. A review of linear black-box models 
The simplest dynamical model is the finite 

impulse response (FIR) model: 

y(t) = B(q)u(t) + e(t) 

= b,u(t - 1) +. . . + b,u(t - n) + e(t). (9) 

Here we have used q to denote the shift 
operator, so B(q) is a polynomial in 4-l. The 
corresponding predictor j(t 1 0) = B(q)u(t) is 
thus based on the regression vector 

The linear black-box structures used in 
practice are all variants of (9) using different 
ways of picking up ‘poles’ of the system and 
different ways of describing the noise charac- 
teristics. The common models used can all, as in 

q(t) = [u(t - 1) 

Ljung (1987), be summarized by the general 

u(t - 2) 

family 

. . . u(t - n)]. 

As IZ tends to infinity, we may describe the 
dynamics of all (‘nice’) linear systems. However, 
the character of the noise term e(t) will not be 
modeled in this way. 

A(q)y(f) = 
B(q) 
-u(t) + 

C(q) 
F(q) 

~ e(f). 
D(q) (10) 

The special cases of (10) are known as the 
Box-Jenkins (BJ) model (A = l), the ARMAX 
model (F = D = l), the output-error (OE) model 
(A = C = D = 1) and the ARX model (F = C = 
D = 1). The predictor associated with (10) can 
be given in ‘pseudo-linear’ regression form as 
(see equation (3.114) in Ljung and Soderstrom, 
1983) 

y^(t 1 e) = e’(p(t, 0). (11) 

The regressors, i.e. the components of ~(t, e), 
are in this general case given by 

(9 

(ii) 

(iii) 

(iv) 

u(t - k) (associated with the B polynomial); 

y (t - k) (associated with the A polynomial); 

yU(t - k 1 O), simulated outputs from past u 
only (associated with the F polynomial); 

c(t - k) = y(t - k) - j(t - k 1 O), prediction 
errors (associated with the C poly- 
nomial); 
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(v) ;$n-- k) = y(t - k) - F,(t - k 1 O), simula- model (14) is equal to jU(t 1 0) if all measured 
errors (associated with the D outputs y(t - k) in the regressors are replaced by 

polynomial). the last computed yu(t -k 1 f3). 

It should be remarked that in the case A # 1 
‘simulated output’ refers to the quantity 

A(q)y(t). 
A linear state-space model in predictor form, 

Following the nomenclature for linear models, 
it is natural to coin similar names for nonlinear 
models. This is well in line with, for example, 
Chen et al. (1990) and Chen and Billings (1992). 
We could thus distinguish between the following: 

x(t + 1) = Ax(t) + Bu(t) + K(y(t) - Cx(t)), 

y(t) = Cx(t) + e(t), 

(12) 
NFIR models, which use only u(t - k) as 
regressors; 

can also be described as a pseudo-linear 
regression (ll), with the predictor p (t 1 f3) = 
Cx(t), and the states x being the regressors. Note 
that each component in x(t) is obtained by linear 
filtering of past inputs and outputs, through 
filters that depend on 8 (i.e. the matrices A, B, C 
and K): 

NARX models, which use u(t - k) and 
y(t - k) as regressors; 

NOE models, which use u (t - k) and 9Jt - 
k I 0) as regressors; in this case the output of 
the model is also 9 (t I 0); 

xi(t) = Fr(q, e)u(t) + F:(q, e)y(t). (13) 

If K = 0 then Fj’(q, 0) = 0, and we have a model 
of output-error type. 

NARMAX models, which use u(t - k), 
y (t - k) and s(t - k 1 19) as regressors; 

The essential difference between the state- 
space regressors and the input-output regressors 
described earlier is that the latter contain blocks 
of the same regressor, time-shifted a number of 
steps. This is also characteristic of state-space 
models of echelon type. 

NBJ models, which use u(t - k), y^(t -k 1 f3), 
E(t - k I 0) and q,(t - k I 0) as regressors; in 
this case the simulated output y^,, is obtained as 
the output from (14), by using the same 
structure, replacing e and E,, by zeros in the 
regression vector cp(t, e); 

State-space regressors are thus less restricted 
in their internal structure. This implies that it 
might be possible to obtain a more efficient 
model with a smaller number of regressors by 
using a state-space model. State-space models in 
connection with neural nets are discussed in, for 
example, Matthews (1992), Nerrand et al., (1993) 
and Rivals (1995). 

Nonlinear state-space models, which use past 
components of virtual outputs, i.e. signal 
values at internal nodes of the network (see 
e.g. Fig. 3 below) that do not correspond to 
the output variable. 

In Narendra and Parthasarathy, (1990) another 
notation is used for the same models when used 
in conjunction with neural networks. The NARX 
model is called the series-parallel model and the 
NOE is called the parallel model. 

3.2. Regressors for nonlinear black-box 
dynamical models 

The described regressors give all the necessary 
freedom for the linear black-box case, and it is 
natural to use these also in the nonlinear case. 
We thus work with structures of the kind 

90 I 6) = g(cpwj a (14) 

where g is some nonlinear function para- 
meterized by 8, and the components of q(t) are 
similar to the regressors just described. For the 
input-output case, the first two, u(t - k) and 
y (t - k), are measured variables and cause no 
problems. The remaining three are all based on 
previous outputs from the black-box model 
j(t - k 1 e), so we should write cp(t, 0) instead 
of q(t) in (14). The question then also arises how 
the simulated output jU(t - k 1 0) is computed if 
the network produces predicted outputs jj(t - 
k 1 0). The answer is that the output from the 

The model structures NOE, NBJ and 
NARMAX and the nonlinear state-space model 
correspod to recurrent structures (see Section 
4.3), because parts of the regression vector 
consist of past outputs from the model. It is in 
general harder to work with recurrent structures. 
Among other things, it becomes difficult to check 
under what conditions the obtained predictor 
model is stable, and it takes an extra effort to 
calculate gradients for model parameter 
estimation. 

3.3. Other choices of regressors 
So far, we have discussed regressors that are 

just linear functions of measured outputs and 
model outputs. With physical insight about the 
system at hand, one should utilize that 
information to form new variables by transfor- 
mations of the raw measurements. From a 
practical point of view, it is sufficient to regard 
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what we have called input u and output y here as a linear model for the system. The residuals from 
suitable transformation of the raw measure- this model will then contain all unmodeled 
ments, formed in view of what is known about nonlinear effects. The neural net model could 
the system. Such a ‘semiphysical regressor’ could, then be applied to the residuals (treating inputs 
for example, be a power signal formed by and residuals as input and output), to pick up the 
voltage and current measurements, if we believe nonlinearities. This is attractive, since the first 
that to be the essential stimulus for the system. step to obtain a linear model is robust and often 
Even if nonlinear structures are to be applied, leads to reasonable models. By the second 
there is no reason to waste parameters to neural net step, we are then assured to obtain at 
estimate facts that are already known. least as good a model as the linear one. 

Another type of preprocessing of raw data in 
the light of prior knowledge is to use filtered 
input as regressors like 

4. NONLINEAR MAPPINGS: POSSIBILITIES 

L(q)u(t), k = 1,. . . ,d, 

rather than u(t - k), where the filters Lk are 
tailored to the application. Laguerre and Kautz 
filters have been extensively discussed in these 
applications (see e.g. Wahlberg, 1991, 1994). 
Interesting generalizations of such regressor 
choices are described in van den Hof et al. 
(1994). 

4.1. Function expansions and basis functions 
4.1.1. The basic features. Now let us turn to 

the nonlinear mapping 

g(cp, @)* (18) 

which for any given 19 goes from R” to Iwp. At this 
point it does not matter how the regression 
vector cp = [cpi . . . cpdlT was constructed. It is 
just a vector that lives in W’. 

3.4. Some other structural questions 
The actual way in which the regressors are 

combined clearly reflects structural assumptions 
about the system. Let us, for example, consider 
the assumption that the system disturbances are 
additive, but not necessarily white noise: 

It is natural to think of the parameterized 
function family as function expansions: 

Y(l) = R(U’) + v(t). (15) 

Here u’ denotes all past inputs, and u(t) is a 
disturbance, for which we only need a spectral 
description. It can thus be described by 

g(po, 0) = C akgk(q). (19) 

We refer to gk as basis functions, since the role 
they play in (19) is similar to that of a 
functional-space basis. In some particular situa- 
tions, they do constitute a functional basis. 
Typical examples are wavelet bases (see Section 
8.1). 

u(t) = H(q)+), 

for some white sequence {e(t)}. The predictor for 
(1.5) is then 

j(t) = [I - HplWly(t) + H-‘G&W). (16) 

We are going to show that the expansion (19) 
with different basis functions, together with all 
the possible choice of regression vector rp 
presented in the previous section, plays the role 
of a unified framework for investigating most 
known nonlinear black-box model structures. 

In the last term the filter H-’ can equally well be 
subsumed in the general mapping g(u’). The 
structure (15) thus leads to an NFIR or NOE 
structure, complemented by a linear term 
containing past y. 

Now, the key question is how to choose the 
basis functions gk. Most well-known nonlinear 
black-box model structures are composed of g, 
obtained by parameterizing a single ‘mother 
basis function’ that we generically denote by 
K(X). In such situations we generally write 

In Narendra and Parthasarathy (1990) a 
related neural network-based model is sug- 
gested. It can be described by 

j(t) =f(&, V,(f)) + g(& 4%(f)), (17) 

where cpl(t) consists of delayed outputs and q,(t) 
of delayed inputs. The parameterized functions f 
and g can be chosen to be linear or nonlinear by 
a neural net. A further motivation for this model 
is that it becomes easier to develop controllers 
from (17) than from the models discussed 
earlier. 

&(p) = K(‘J’t Pk, yk) ‘= @k(p - yk))‘. (20) 

The last equation is to be interpreted symboli- 
cally, and will be specified more precisely below. 
It stresses that Pk and Yk denote parameters of 
different nature. Typically, & is related to the 
scale or to some directional property of gk((p), 
and 3/k is some position or translation parameter. 

In McAvoy (1992) it is suggested to first build 

A scalar example: Fourier series. Take K(X) = 

cosx. Then (19) and (20) will be the Fourier 
SerieS expansion, with Pk as the frequencies and 
yk as the phases. 



1696 J. Sjoberg et al. 

Another scalar example: piecewise-constant 
functions. Take K as the unit interval indicator 
function: 

K(X) = 
1 for 05x<l, 

0 otherwise, (21) 

and take, for example, 3/k = k, & = l/A and 
ffk = f(kA). Then (19) and (20) give a piecewise- 
constant approximation of any function fi 
Clearly we should have obtained a quite similar 
result by a smooth version of the indicator 
function, e.g. the Gaussian bell: 

1 
K(X) = z e-xz’2. (22) 

A variant of the piecewise-constant case. Take K 

to be the unit step function 

K(X) = 
0 for x < 0, 

1 for x20. (23) 

We then just have a variant of (21), since the 
indicator function can be obtained as the 
difference of two steps. A smooth version of the 
step, like the sigmoid function 

K(X) = a(x) = &, 
will of course give quite similar results. 

4.1.2. Classification of single-variable basis 
functions. Two classes of single-variable basis 
functions can be distinguished, depending on 
their nature. 

Local basis functions are functions having 
their gradient with bounded support, or at 
least vanishing rapidly at infinity. Loosely 
speaking, their variations are concentrated on 
some interval. 

Global basis functions are functions having 
infinitely spreading (bounded or not) gradient. 
Clearly the Fourier series is an example of a 
global basis function, while (21)-(24) are all 
local functions. 

4.1.3. Construction of multivariable basis 
functions. In the multidimensional case (d > l), 
gk are multivariable functions. In praCtiCe they 
are often constructed from the single-variable 
function K in some simple manner. Let us recall 
the three most often used methods for 
constructing multivariable basis functions from 
single-variable basis functions. 

1. Tensor product. Given d single-variable func- 
tions gl(cp,), . . . , gd(qd) (identical or not), the 
tensor product construction of multivariable 
basis function is given by their product 

g,(cp,) . . &(cpd). 

Radial construction. For any single-variable 
function K, the radial construction of 
multivariable basis function of cp E Rd, has 
the form 

gk((P) = gk(q, ok, Yk) = K(iV - Yki&)t 

(25) 

where II * llp, denotes any chosen norm on the 
space of the regression vector q. The norm 
could typically be a quadratic norm 

(26) 

with Pk as a possibly k-dependent positive 
definitive matrix of dilation (scale) para- 
meters. In simple cases flk may be just scaled 
versions of the identity matrix. 

Ridge construction. Let K be any single- 
variable function. Then for all & E Rd, 
yk E [w, a ridge fUnCtiOn is given by 

gk(q) = gk(% Pk, Yk) 

= K@:(P + yk), ‘4’ E Rd. (27) 

The ridge function is thus constant for all q in 
the subspace {cp E IWd:/3zq = const}. As a 
consequence, even if the mother basis 
function K has local support, the basis 
functions gk will have unbounded support in 
this subspace. The resulting basis could be 
said to be semiglobal, but the term ridge 
function is more precise. 

Let us comment on the different possibilities. 
For evaluating a function constructed by tensor 
product, its factor functions must be evaluated 
separately; thus the computational cost is 
roughly proportional to the dimension d. For a 
function constructed by the other two methods, 
the dimension-dependent computational cost 
stays only in the evaluation of the norm of 
cp - yk or the inner product p&; consequently 
the dimensional dependence is much weaker. 
For this reason, the tensor product is rarely used 
in high-dimensional cases. On the other hand, 
these methods yield very different forms of 
multivariable functions. By using factors of 
different natures, the tensor-product construction 
allows one to build functions that behave very 
differently in different directions. The radial 
construction ensures some directional homoge- 
neity. The ridge construction also offers some 
direction-selective feature, even if these basis 
functions are necessarily constant in some 
directions. This, however, turns out to be a quite 
useful property in many practical cases. Note 
also that in some particular situations two 
methods may lead to the same result; for 
example a multivariable Gaussian function can 
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be obtained by both tensor-product and radial 
constructions. 

4.2. Connection to ‘named structures’ 
Here we briefly review some popular model 

structures. Other structures related to interpola- 
tion techniques are discussed in Juditsky et al. 
(1995). They all have the general form of the 
function expansions (19) and most of them are 
composed of basis functions g, obtained by 
parameterizing some particular ‘mother basis 
function’ K as described in the previous section. 

Wauelets. Wavelet decomposition is a typical 
example of the use of local basis functions. 
Loosely speaking, the ‘mother basis function’ 
(usually referred to as mother wauelet in the 
wavelet literature, and there denoted by Cc, rather 
than K) is dilated and translated to form a 
wavelet basis.? In this context it is common to let 
the expansion (19) be doubly indexed according 
to scale and location, and use the specific choices 
(for the one-dimensional case) pj = 2j and 
yk = k. This gives, in our notation, 

gj,k(lp) = 2i’2K(2’(p - k), j, k E z. (28) 

The multivariable wavelet functions can be 
constructed by tensor products of scalar wavelet 
functions, but this is not the preferred method. 
See Section 8. 

Compared with the simple example of a 
piecewise-constant function approximation in 
Section 4.1, we have here multiresolution 
capabilities, i.e. several different scale para- 
meters are used simultaneously and overlap- 
pingly. With suitably chosen mother wavelet and 
appropriate translation and dilation parameters, 
the wavelet basis can be made orthonormal, 
which makes it easy to compute the coordinates 
aj,k in (19). This is discussed in some detail in 
Section 8.1 below and extensively in Juditsky et 
al. (1995). 

Wavelet and Radial Basis Networks. The choice 
of local basis functions in combination with the 
radial construction of the multivariable case (25), 
without any orthogonalization, is found in both 
wavelet networks (Zhang and Benveniste, 1992) 
and radial-basis neural networks (Poggio and 
Girosi, 1990). 

Kernel estimators. Another well-known example 
of the use of local basis functions is that of kernel 
estimators (Nadaraya, 1964; Watson, 1969). A 

t Strictly speaking, sometimes the dilated and translated 
wavelets may be a frame instead of a basis. See Daubechies 
(1992). 

kernel function? K( a) is typically a bell-shaped 
function, and the kernel estimator has the form 

(29) 

where h is a small positive number and ‘/k are 
given points in the space of the regression vector 
q. This is clearly a special case of (19) and (20). 

Nearest neighbors or interpolation. Models that 
produce outputs depending on the closest 
estimation data points and interpolation models 
can also be described as expansions in basis 
functions. Assume that the data are drawn such 
that their cp values form a uniform lattice in Rd. 
Take K as the indicator function (21), expanded 
to a hypercube by the radial approach (25) 
(using the max norm). Then choose the location 
and scale parameters in (25) such that the cubes 
K( IIcp - yk lip,) are tightly laid and that exactly 
each data point falls at the center of one cube. 
The corresponding expansions (19) will then be 
equivalent to the nearest-neighbor model that 
consists in, for any value 4, taking as the output 
estimate the y value of the data point whose cp 
value is the closest to 6. 

B splines. B splines are local basis functions that 
are piecewise polynomials. The connections of 
the pieces of polynomials have continuous 
derivatives up to a certain order, depending on 
the degree of the polynomials (De Boor, 1978; 
Schumaker, 1981). Splines are very nice 
functions, since they are computationally very 
simple and can be made as smooth as desired. 
For these reasons, they have been used widely in 
classic interpolation problems. 

Sigmoid neural networks. The combination of 
the model expansion (19) with a ridge basis 
function (27) and the sigmoid choice (24) for 
mother function, gives the celebrated one- 
hidden-layer feedforward sigmoid neural net. 

Hinging hyperplanes. The hinging hyperplanes 
model (Breiman, 1993) is closely related to the 
neural network, and corresponds to the choice of 
the hinge function rather than the sigmoid for 
the mother basis function K. The hinge function 
has the form of an ‘open book’ (see Fig. l), and 
is defined (Breiman, 1993) as 

h(cp) = fmax {P’cp + Y+, P-9 + r-1 

where /3’ and p- are row vectors and -y+ and 
y- are scalars. In Pucar and Sjoberg (1995b) it is 
shown that the hinging hyperplane model is 

t Usually the kernel function is denoted by K( ) 
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Fig. 1. A hinge function; the building block for hinging 
hyperplane models. 

overparameterized in its original form. By 
introducing the basis functions 

K(X) = 
0 for x < 0, 

fx for x>O, 

the hinging hyperplanes model can be 
as 

c ‘dPTV + Y) + PT’p + 7’0, 

where Al. is a parameter vector with the same 

expressed 

dimension as p. Hence the hinging hyperplane 
model is a ridge constructions with an additional 
linear term. Using hinge functions as basic 
functions yields the kind of piecewise-linear 
model proposed by Sontag (1981). 

Projection pursuit regression. Another example 
of ridge-type basis function is the projection 
pursuit regression (Friedman and Stuetzle, 1981; 
Huber, 1985), having the form 

where Pk are q x d matrices, cp E Rd, d > q, and 

gk: RF-+ R are some smooth fitted functions. 
The connection to our framework is obvious. 
The term ‘projection pursuit’ derives from the 
fact that the q selected dimensions represent the 
projections in the regressor space that show the 
most significant patterns . In other words, there 
is not much that happens across these subspaces. 

Partial least squares. The ridge basis function 
approaches have a connection, at least concep- 
tually, to the partial least-squares (PLS) 
techniques, much used in chemometrics (Wold et 
al., 1984; Helland, 1990). PLS also employs 
techniques to select the most significant sub- 
spaces of a larger regressor space, so as to 
reduce the number of parameters to estimate. 

Fuzzy models. The so-called fuzzy models also 
belong to the model structures of the class (19). 

In this case the basis functions gk are constructed 
from the fuzzy set membership functions and 
inference rules. How this works is discussed 
further in Section 9. 

4.3. Network questions 
So far we have viewed the model structures as 

basis function expansions, albeit with adjustable 
basis functions. Such structures are often 
referred to as networks, primarily since typically 
one ‘mother basic function’ K is repeated a large 
number of times in the expansion. Graphical 
illustrations of the structure therefore look like 
networks. 

4.3.1. Multilayer networks. The network as- 
pect of the function expansion is even more 
pronounced if the basis mappings are convolved 
with each other in the following manner. Let the 
outputs of the basis functions be denoted by 

Vi*‘(t) = gk(q(t)) = K(+)(t) Pkt ?‘k)~ 7 

and collect them into a vector 

cp (*) = [&‘(t) . . . &)(t)]. 

Now, instead of taking a linear combination of 
these (p(k*)(t) as the output of the model (as in 
(19)), we could treat them as new regressors and 
insert then into another ‘layer’ of basis functions, 
forming a second expansion: 

where 8 denotes the whole collection of involved 
parameters: (Yk, &, yk, a!‘), pj*) and rl”. Within 
neural network terminology, (31) is called a 
two-hidden-layer network. The basis functions 
K((P(t), fik, yk) then constitute the first hidden 
layer, while K( (p(*), /3f’, -y{“‘) give the second 
one. The layers are ‘hidden’ because they do not 
show up explicitly in the output g(cp, 0) in (31), 
but they are of course available to the user. See 
Fig. 2 for an illustration. Clearly, we can repeat 
the procedure an arbitrary number of times to 
produce multilayer networks. This term is 
primarily used for sigmoid neural networks, but 
applies to any basis function expansion (19). 

Input layer Hidden layers Output layer 

/ A I 
F-i--- 

1 e 

s!i 

cl+ 
z 

cp j o_ 
z B 

It- 
I: 

Fig. 2. Feedforward network with two hidden layers. 
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The question of how many layers to use is, 
however, not easy. In principle, with many basis 
functions, one hidden layer is sufficient for 
modeling most practically reasonable systems 
(see e.g. Cybenko, 1989; Barron, 1993). Sontag 
(1993) contains many useful and interesting 
insights into the importance of second hidden 
layers in the nonlinear structure. 

4.3.2. Recurrent networks. Another very im- 
portant concept for applications to dynamical 
systems is that of recurrent networks. This refers 
to the situation that some of the regressors used 
at time t are outputs from the model structure at 
previous time instants: 

&) = g(cp(t - k), 0). 

See the illustration in Figure 3. It can also be the 
case that some component qj(t) of the regressor 
at time t is obtained as a value from some 
interior node (not just at the output layer) at a 
previous time instant. Such model-dependent 
regressors make the structure considerably more 
complex, but offer at the same time quite useful 
flexibility. 

One might distinguish between input/output- 
based networks and state-space-based networks, 
although the difference is less distinct in the 
nonlinear case. The former would be using only 
past outputs from the network as recurrent 
regressors, while the latter may feed back any 
interior point in the network to the input layer as 
a recurrent regressor. Experience with state- 
space based networks is quite favorable (see e.g., 
Matthews, 1992; Nerrand et al., 1993; Rivals, 
1995). 

5. INTERMISSION 

The rather formidable task to finding a 
black-box, nonlinear model description has now 
been reduced to the following subproblems. 

1. 

2. 

3. 

Select the regressors q. 

Select a scalar mother basis function K. 

Let the expansion of this mother function in 
the regressor space be either of radial (25) or 
ridge (27) type, or possibly be a specific 
multidimensional function. 

Fig. 3. Example of a recurrent network. 9-l delays the signal 
one time sample. 

4. Determine the number of basis functions to 
be used in (19), as well as the number of 
hidden layers, according to (31). 

5. Determine the values of the dilation and 
location parametrs Pk and yk. 

6. Determine the coordinate parameters (Yk in 

(19). 

The remainder of this article will deal with these 
steps. We shall discuss the user aspects of steps 1 
and 3 in Section 11. 

The combined effects of the choices in steps 
2-5 will affect the approximating power of the 
model structure. The companion paper by 
Juditsky et al. (1995) is specifically devoted to 
this question. 

The issues we now turn to are steps 5 and 6, 
which are the estimation questions. Basically, 
there are two possibilities for the dilation and 
location parameters in step 5. 

l Let p and y be continuous variables and 
estimate them at the same time as the LY 
parameters. 

l Treat /3 and y separately, for example by 
offering predetermined values for them, as in 
the wavelet approach. Then the estimation of 
coordinates a is a linear regression problem 
for one layer networks. 

We shall deal with these approaches in Sections 
7 and 8 respectively. First, however, in the next 
section we shall review some general aspects of 
model estimation. 

6. MODEL ESTIMATION AND MODEL 
PROPERTIES 

Several different techniques have been de- 
veloped for estimating models. We will discuss 
such methods in more detail in the following two 
sections, but we shall first point to some basic 
and general features that affect the model 
properties. These turn out to have important 
implications both for the choice of basis 
functions and for the actual estimation process. 

6.1. Models and model estimation 
Consider our general black-box model 

y(t) -d&h e, = i akgk(dt)j Pkh (32) 
k=l 

in which the parameters yk previously used have 
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been included in & for brevity in the following 
discussion. For chosen basis functions gk, a main 
goal of the model estimation is to choose the 
parameters so that the model fit becomes good. 
Assume that we are given a (finite) set 2,” of 
(measured) regressor-output pairs: 

zpN= {(y(t), cp(t)):t = 1, . ) N}. (33) 

We refer to Zf as the estimation data set, since 
the model parameter estimation will rely on it. 
Note that all or some of the parameters 8 (i.e., 
(Yk, &) need to be estimated from the data Zf, 
depending on the choice of the basis functions 
and the estimation method. In the following, let 
us denote-with some abuse of notation-the 
estimated part of the parameters by the vector 8. 
Other, non-estimated, parameters will be sub- 
sumed in the basis functions gk. Note that the 
dimension of 8 is proportional to n, the number 
of basis functions used in (32). The actual 
number of estimated parameters, dim 8, will be 
denoted by m. 

Now, a leading guideline for estimating 8 will 
be to minimize the error between the output of 
the model and the measured output using Zr, as 
in (5): 

m: v,(e, Zr) = b $ II Y(t) - g(cp(t), 0) II*. (34) 
f 1 

The actual method may be to perform this 
minimization explicitly (as detailed in Section 7) 
or to use some constructive methods (as 
discussed in Section 8). 

6.2. Model quality 
Suppose that the actual data can be described 

by 

y(t) = g&(t)) + e(t)* (35) 

where g, is some unknown ‘true model’ and e(t) 
is white noise with variance A. 

Let the estimate of 8 based on ZF be denoted 
by 6,. We then want go(q) and g(cp(t), 6,) to be 
‘close’. 

6.2.1. Measures of model quality. How do we 
measure the quality of the model? There are of 
course many possible measures, suitable for 
different applications. We shall here focus on 
one that allows some important analytical 
results. We measure the fit between any given 
model 8 and the true system by 

V(e) = E IlY(t) - g(cp(t), e)V 

= A + E Ilsd&>) - g(cp(t>t @II’, (36) 

where we recall that A is the variance of the 
noise e(t). In this expression the regressors q(t) 
are assumed to be a stationary process. For most 
practical purposes, and under quite general 

conditions, it can also be interpreted as the 
sample mean: 

“‘8’=;mXh,$ iiy(t)-g(q(t), e)iiz. (37) 
, I 

Here, no other conditions have to be imposed, 
other than that the indicated limit exists. 

It is important to realize that the measure v 
depends on the properties of the regressors. What 
is a ‘good model’ thus depends on what regressor 
sequence it will be applied to. In what follows we 
shall assume that the regressors in the measure 
(36) have the same properties (distribution) as 
those used in Zf. This is a very important 
restriction. Within a given model structure, 
parameterized by 8 of dimension m, we can 
define the best model according to the chosen 
quality measure: 

e,(m) = arg rn: V(e) (38) 

where we show the dependence on m explicitly. 
Note again that e,(m) will depend on the 
properties of cp. 

To measure the quality of a given model bN, 
we shall use 

EV(6,) = V,(m). (39) 

Here the expectation E is with respect to the 
model 8,. The measure (39) thus describes the 
model’s expected fit to the true system, when 
applied to a new data set, with the same 
properties (distribution) of the regressors cp. In 
the notation V,(m) we stress that this measure, 
for given regressor properties, and a given model 
structure family, depends only on the model size 
m. 

6.2.2. Basic facts: bias and variance. We shall 
now quote some quite general results on model 
quality that can be found, for example, in 
Chapter 16 of Ljung (1987). They are entirely 
independent of the model structure used, and 
are valid under quite general conditions. 

Assume that the estimate 6, is obtained by 
minimization of (34). Assume also the model 
e,(m) is ‘quite good’ in the sense that the model 
residuals should be white noise. Then the model 
quality criterion V,(m) as defined in (39) can be 
expressed as 

V,(m) = EV(8,) 

= A + E Ilso(cp@)) - A&), kv) II* 

= A + E Ilso(cp) - ‘dcp7 ~,W>ll’ 
- \ 
“01SC bias 

+ E Ildcpj f!&G> - g(cp, &dll’. (40) 
, I 

variance 
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As indicated, V,(m) can be approximately 
decomposed into two parts: one due to the bias, 
the other to the variance of the estimation. They 
are further examined in the following. 

Bias. As N tends to infinity, we have 

8, + O*(m); (41) 

then V,(m) will only involve the bias part. The 
estimate will thus converge to the best possible 
approximation of the true system, for the given 
model structure and model size (as measured by 
its prediction performance under the regressor 
properties used in the estimation data set). 

Variance. The estimated parameter vector 6, 
will have a certain covariance matrix that 
describes its deviation from e,(m). This matrix 
is mostly not of direct interest, since the 
parameters do not have physical significance. Let 
us instead translate the variation in 8 to the 
resulting variation in prediction performance. 
This gives 

E II~(v(~), 6,) - g(~(t), e,(m))112 = A z. (42) 

Here, as before, A = Ee*(t), the variance of the 
true prediction errors defined in (35). The 
approximate equality is asymptotic in N. Also 
the expression is given for the case of scalar y. 
(In the multivariate case the quadratic norm 
used in (42) should be taken as the inverse of the 
covariance matrix of e(t). The factor A should 
then be omitted: it is subsumed in the norm 
used.) 

Combining (40) and (42) gives 

V,(m) = EV(6,) = A + A ; 

+ E Ilso((~) - g(cp, %&4)ll’ 

= ~(O,(m)) + A ;. (43) 

A useful interpretation of (43) is that it displays 
the expected loss when the model is applied to a 
new data set. It is important to realize that the 
expected value of the minimized loss function 
(i.e. the model’s performance when applied to 
the estimation data) is quite different. With VN 
defined by (34), we have 

El’,@,) = v&.(m)) - A ;. (44) 

6.2.3. Basic consequences: spurious para- 
meters. Within a given model structure family, 
v(e,(m)) is a non-increasing function of m: the 
potential approximation degree increases with 

the number of basis functions used. The 
approximation capabilities of different structures 
in this respect will be commented upon shortly in 
Section 6.3. However, when the model is 
estimated, there is a direct penalty in using many 
parameters, as manifested by the variance 
contribution. An added parameter (m increased 
by 1) could very well be useful in that it 
decreases V,(O(m)). However, as long as this 
decrease is less than A/N, the addition of this 
parameter is harmful for the overall model 
quality V,(m), and the parameter should not be 
included. We call such a parameter spurious. 
The term over@ is often used to describe what 
happens when spurious parameters are 
employed. 

6.3. Model structure flexibility 
Having the bias small for a given parameter 

dimension is a matter of having an efficient 
function basis: small bias achieved with few basis 
functions. Thus a great deal of attention is paid 
to the quality of basis function in terms of 
function approximation, regardless of statistical 
issues. 

The black-box model structures reviewed 
earlier are all flexible enough to identify most 
reasonable systems in practice. On what 
concerns the nonlinear mapping from the 
regression vector to the output, the companion 
paper by Juditsky et al (1995) contains extensive 
discussions. Here we just mention some ex- 
amples. It is well known that orthonormal 
wavelets form orthonormal basis of L2(Rd) 
(Mallat, 1989; Daubechies, 1992). Several 
authors have shown that a one-hidden-layer 
sigmoid network can approximate any con- 
tinuous function with an arbitrary accuracy, 
provided the number of basis functions used in 
the net is sufficiently large, and some error 
bounds are known (see e.g. Cybenko, 1989; 
Barron, 1993; Juditsky et af., 1995). Similar 
results can be obtained for other one-hidden- 
layer networks, by using similar techniques. 

6.4. Parameters offered and parameters used 
There is a natural way to approach the 

problem of minimizing (40) with respect to m: 
try a sequence of models, with increasing m and 
estimate V,(m) either by testing the model on a 
validation data set, or by modifying the obtained 
loss for the estimation data in view of (43), (44). 
(The latter is the essence of the Akaike critria 
AIC and FPE.) 

In some simple model structures there is a 
natural ‘ordering’ of parameters. This is true, for 
example, for linear black-box models of single- 
input single-output dynamical systems: the model 
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order serves as the ordering entity. For the 
nonlinear black-box models under discussion 
here, this is not the case. It is therefore not easy 
to carry out the mentioned program, without 
testing an astronomical amount of cases. This 
leads to the idea of ‘offering’ the model structure 
a whole lot of parameters, and then trying to 
decide which are the important-non-spurious- 
ones, and ‘using’ only those. The number m in 
(40) should then correspond only to the number 
of actually used parameters. In this subsection 
we shall review some possibilities to achieve that 
feature. 

6.4.1. Regularization: pull towards the origin. 
One common and useful technique to distinguish 
between more and less ‘important’ parameters is 
to add a penalty term to the criterion (34): 

WN(& C) = VN(&, -C) + 6 II 412 J (45) 

where S is a small number. Intuitively, the idea is 
that a parameter that does not influence the first 
term very much will be kept close to zero by the 
second term. A parameter that is important for 
the model fit will, however, not be very much 
affected by the second term. Suppose we 
minimize (45) instead of (34). Then it can be 
shown, (see e.g. Sjoberg and Ljung, 1992; 
Moody, 1992) that (42) will still hold, with the 
important change that the number m is reduced 
to 

r(m, 8) = jj a’ 
k=l (Crj + 8)’ ’ 

where a, are the eigenvalues (singular values) of 
v”(e), the second-derivative matrix (the Hes- 
sian) of the criterion (36). 

How does one interpret (46)? A redundant 
parameter will lead to zero eigenvalue of the 
Hessian. A small eignevalue of V” can thus be 
interpreted as corresponding to a parameter 
(combination) that is not so essential: a ‘spurious 
parameter’. The regularization parameter S is 
thus a threshold for spurious parameters. Since 
the eigenvalues aj are often widely spread (for 
the neural network case, see Saarinen et al., 
1993), we have 

r(m, 8) =m# 

= number of eigenvalues of V” 

that are larger than S. 

We can think of m# as the ‘efficient number of 
parameters in the parameterization’. Regulariza- 
tion thus decreases the variance, but typically 
increases the bias contribution to the total error. 

The parameter 6 in (45) acts like a knob that 
affects the ‘efficient number of parameters used’. 
It thus plays a similar role as the model size: 

l large 
ante, 

l small 
small 

All this 

S-small model structure, small vari- 
large bias; 

&---large model structure, large variance, 
bias. 

means that we can ‘offer’ a large number 
of parameters for the fit, and then use 6 in (45) 
to tune in the actual number m* of ‘used’ 
parameters. The tuning can be done by checking 
the model’s prediction performance when 
applying it to a validation data set. 

The added regularization term S 1) 811’ in (45) 
can be changed to 

w,(e, z:) = v,,(e, z:) + 6 118 - e#llz (47) 

without changing the beneficial effects on the 
variance error. This penalty term corresponds to 
a prior Gaussian distribution for the parameters, 
i.e. they have mean B* and covariance matrix 
2/N. In MacKay, (1992) a Bayesian approach is 
introduced in which the parameters may belong 
to different Gaussian distributions. This means 
that the spurious parameters can be excluded 
from the fit by associating them with a large 
prior at the same time as the important 
parameters, connected to a small prior, receive 
only a small bias. The additional Gaussian 
distributions describing the parameters can be 
estimated together with all other parameters. 
This is also described in MacKay (1991). 

Regularization can also be used to include 
prior knowledge in the black-box model. Instead 
of penalizing the size of the parameters as in 
(47), one can add a complexity term which 
penalizes the distance to some nominal model. 
An example of this approach is given in Suykens 
et al. (1994). 

6.4.2. Omitting basis functions. An alternative 
way to find the important parameters is to select 
the regressors to be used carefully, guided by the 
data. This is a classical topic in statistical 
regression, and we shall review such techniques 
in Section 8. 

A variant of this is shrinking. This means that 
components of 6, that are below a certain ‘noise 
level’ are set equal to zero or pulled towards 
zero using a soft threshold. (The relationship to 
regularization is obvious.) This reduces variances 
without significantly changing the bias. The 
difficulty is to know or estimate this ‘noise level’. 
This is also discussed in Section 8.1 and 
extensively in Juditsky et al. (1995) for the case 
of wavelets, where most spectacular results are 
obtained. 

The equivalent of shrinking in connection with 
neural nets is called pruning, and it has attracted 
much interest lately (for an overview and further 
references see e.g. Reed, 1993). In pruning, in 
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contrast with shrinking, the dilation parameters 
are also considered and possibly deleted. 

7. ESTIMATION ALGORITHMS: OPTIMIZATION 
METHODS 

In this section and the next, we review 
methods for parameter estimation; i.e. for a 
given number II of chosen basis functions g,, we 
deal with issues on how to estimate unknown 
parameters in the model. 

If all the components of 8 are ‘unknown’, a 
basic approach is to minimize VN(f3) as defined 
in (34) with respect to all the parameters. First a 
short review of algorithms for minimizing V,(O) 
is given, and then some topics connected to this 
minimization are discussed. 

7.1. Methods of minimization 
7.1.1. The criterion. Given a scalar-valued 

criterion like (34), the parameter estimate is 
defined as the minimizing argument: 

6, = arg min VN(0). (48) 

The estimate of the unknown function will then 
be 

&(cp) = g(cp, &v). (49) 

Sometimes a general, non-quadratic, norm is 
used instead of (34) 

v,(e) = i I$ wt, e)), 
I 1 (50) 

et, 0) = Y(t) - gtcpw, 0). 

The estimate 8, is the maximum likelihood 
estimate for a specific noise assumption, which 
depends on the choice of norm. The quadratic 
norm, for example, corresponds to the assump- 
tion of white Gaussian noise. 

7.1.2. Entropy interpretation. When prob- 
abilities are being estimated, for example in 
classification problems, it is common to choose a 
criterion based on the relative entropy, (see e.g. 
Cover and Thomas, 1991). This gives the 
maximum-likelihood estimate of the probability 
(Baum and Wilczek, 1988). The relative entropy 
is defined as 

P(cp) entropy = p(q) log - 
B(cp) ’ 

(51) 

where p (~0) = @ (cp, 0) and p (cp) are the estimated 
and true probability for cp belonging to class %. 
The entropy is non-negative, and it is zero only if 

P(q) = P(cp). 
Removing the parameter-independent terms 

from (51) gives -p(q)logp(q), which is the 
expectation value of -log@ (cp). If this expecta- 

tion value is replaced by the sample means, one 
obtains the criterion 

v,(e) = - C logptcp). 
PS% 

(52) 

If several probabilities are considered at the 
same time, for example in a two-class problem, 
then the critrion becomes a sum of terms like 

(52). 
7.1.3. Nonlinear optimization methods. In 

general, the minimum of V,(O) cannot be 
computed analytically, so the minimization has 
to be done by some numerical search procedure. 
This is called nonlinear optimization, and a 
classical treatment of the problem of how to 
minimize sum of squares is given in Dennis and 
Schnabel (1983). A survey of methods for the 
NN application is given in Kung (1993) and van 
der Smagt (1994). 

Generally speaking, the numerical minimiza- 
tion of criteria of fit for identification purposes is 
a well established topic, and treated for general 
model structures, for example in Ljung (1987) 
and Ljung and Glad (1994). The general 
consensus is that one should use a damped 
Gauss-Newton algorithm with regularization 
features for ill-conditioned Hessians-all of this 
to be defined shortly-in an off-line manner, 
unless the application demands on-line (recur- 
sive) algorithms. Given this, a surprising amount 
of applications in the neural network area have 
used gradient search in an on-line fashion. This 
has contributed to the popular opinion that 
neural networks require large amounts of time 
for their ‘training’ (i.e. parameter estimation). 

7.1.4. The basic search algorithm. The discus- 
sion that follows is based on the quadratic norm 
(34)-for other choices, only minor modifica- 
tions have to be done, Most efficient search 
routines are based on iterative local search in a 
‘downhill’ direction from the current point. We 
then have an iterative scheme of the following 
kind: 

&;+I) = &i) - P;R,’ VA. (53) 

Here @) is the parameter estimate after 
iteration number i. The search scheme is thus 
made up from the three entities 

l pi, step size; 

l VA, an estimate of the gradient V&(6(‘)); 

l R;, a matrix that modifies the search direction. 

It is useful to distinguish between two different 
minimization situations: 

(i) ofSAne or batch-the updata ~$7’ Ox. is 
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(ii) on-line or recursive-the update is based 
only on data up to sample i (Zi) (typically 
done so that the gradient estimate Vfi is 
based only on data just before sample i.) 

We shall concentrate on the off-line case below. 

based on the whole available data 
ZN; 

record 

For some general aspects of recursive tech- 
niques, we refer to Sjiiberg et al. (1994). 

7.2. Search directions: gradient and Newton 
The basis for the local search is the gradient 

VA(e) = - $ z [y(t) - g(cp(t), @lh(+4t), Q I 1 
(54) 

where 

h(cp(t), 0) 

= ;g(q(t), e) (an (m X l)-vector), (55) 

where m = dim 8. (Here we assume that y is a 
scalar.) It is well known that gradient search for 
the minimum is inefficient, especially for 
ill-conditioned problems close to the minimum. 
Then it is optimal to use the Newton search 
direction 

R- @)Vxe), (56) 

where 

zqe) = v;(e) 

= $ $ h(cp(t)> fwTGf4)~ 0) 
, 1 

+ $ $i [Y(t) - da9 e)i 
I I 

(57) 

The true Newton direction will thus require that 
the second derivative 

-$ gka 0) 

be computed. Also, far from the minimum, R(8) 
need not be positive-semidefinite. Therefore 
alternative search directions are more common 
in practice. 

l gradient direction. Here one simply takes 

Ri = I. (58) 

Gauss-Newton direction. Here 

Ri = H; 

= hz h(cp(t), 6”‘)hT(cp(t), @). (59) 

Levenberg-Marquardt direction. Here 

Ri = Hi + SI, (60) 

is used, where Hi is defined by (59) and S may 
be used instead of a step size. A large S gives a 
small step in the gradient direction and a small 
(zero) 6 gives a Gauss-Newton step. 

Conjugate gradient direction. The Newton 
direction is constructed from a sequence of 
gradient estimates. Loosely, VE; can be 
thought of as constructed by difference 
approximation of d gradients. The direction 
(56), however, is constructed directly, without 
explicitly forming and inverting V”. 

It is generally considered (Dennis and 
Schnabel, 1983) that the Gauss-Newton search 
direction is to be preferred. For ill-conditioned 
problems, the Levenberg-Marquardt modifica- 
tion is recommended. The ideal step size p in 
(53) would be p = 1 if the underlying criterion 
really were quadratic. What is typically done is 
that several values of p are tested (from 1 and 
down) until a new parameter value is found that 
gives a lower value of the criterion. This is what 
is referred to as the damped Gauss-Newton 
method. 

However, good results with conjugate gradient 
methods have also been reported in NN 
applications (van der Smagt, 1994). Such 
methods where an approximation is used instead 
of the true Hessian are referred to as 
quasi-Newton methods. 

Equation (53) describes how the parameter 
update is done, and this is the basic numerical 
method to find the minimum. The straight- 
forward approach is to estimate all parameters in 
each iteration. There also exist two-stage and 
multistage algorithms where only some of the 
parameters are updated in each iteration. By 
only considering a subset of the parameters, the 
computational burden of each iteration becomes 
lower. This must usually, however, be compens- 
ated by a larger number of iterations. The 
advantage of this approach depends on the 
nature of the specific problem considered. For 
example, parameters connected to non- 
overlapping basis functions can be updated 
independent of each other. 

A recent example of a multistage method is 
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Breiman’s algorithm for the parameter estima- 
tion in a hinging hyperplanes model (Breiman, 
1993). Breiman suggests a scheme where only 
the parameters in connection with one hinge 
function should be updated in each iteration. At 
first, it is not at all obvious that the algorithm fall 
under the general description covered by (53), 
but it can be shown that the algorithm is 
equivalent to a multistage Newton algorithm 
applied to a quadratic criterion. See Pucar and 
Sjbberg (1995a). 

7.3. Back-propagation: calculation of the 
gradient 

The only model-structure-dependent quantity 
in the general scheme (53) is the gradient of the 
model structure (55). In connection with neural 
networks, the celebrated back-propagation error 
algorithm (BP)? is used to compute this gradient. 
Back-propagation has been described in several 
contexts (see e.g. Werbos, 1974; Rumelhart et 
al., 1986). For a one-hidden-layer sigmoid neural 
network, (27) it is straightforward to compute 
the gradient, since (omitting the subscript k) 

$ ag(& + r) = g(PP + Y), 

& ag(P9 + r) = ag’(& + Y), 

where (Y and y are scalars and /3 is a row vector. 
The BP algorithm in this case means that the 
factor cyg’@q + 7) from the derivative with 
respect y is reused in the calculation of the 
derivative with respect to p. 

The back-propagation algorithm is, however, 
very general and not limited to one-hidden-layer 
sigmoid neural network models. Instead, it 
applies to all network models, and it can be 
described as the chain rule for differentiation 
applied to the expression (19) with a smart reuse 
of intermediate results needed at several places 
in the algorithm. For ridge construction models 
(27) where pi . is a p arameter vector (e.g. neural 
nets), the only complicated thing with the 
algorithm is actually to keep track of all indices. 
When pi is a parameter matrix, as in the wavelet 
model, the calculation becomes somewhat more 
complicated, but the basic procedure remains the 
same. 

When shifting to multilayer network models, 

t Sometimes in the NN literature the entire search 
algorithm is called back-propagation. It is, however, more 
consistent to keep this notation just for the algorithm used to 
calculate the gradient. 

the possibilities of reusing intermediate results 
increase, and so does the importance of the BP 
algorithm. This can be described in an 
illustrative way; see Fig. 4. 

For recurrent models, the calculation of the 
gradient becomes more complicated. The gradi- 
ent h(t) at one time instant depends not only on 
the regressor cp(t, f3) but also on the gradient at 
the previous time instant h(t - 1). See Nerrand 
et al. (1994) for a discussion of this topic. The 
additional problem of calculating the gradient 
does not, however, change anything essential in 
the minimization algorithm. In the neural 
network literature this is often referred to as 
back-propagation through time. 

7.4. Implicit regularization, stopped iterations 
and ‘overtraining’ 

We have stated that the estimation of 8 is 
performed by minimizing the criterion (34). 
Then the iterations in the basic scheme (53) 
could be run until no further improvement in the 
fit can be found, i.e. until a (local) minimum of 
V, has been reached. However, it was noted 
early on in the neural network literature that if 
the model was evaluated on validation data, it 
first improved with the number of iterations, but 
then started to deteriorate with increasing 
number of iterations (despite the fact that the 
value of V,, based on the estimation data, of 
course continued to improve). This phenomenon 
was termed overtraining. 

The effect can be explained as follows (for 
more formal treatments, see Wahba, 1987; 
Sjijberg and Ljung, 1992): Suppose that the 
iterative search in (53) is started at b(O) = 8”. 
The iterations will then pull the parameters 
towards the minimizing values. The parameters 
that have a substantial influence on the fit will 
feel a stronger pull, and will be adjusted quicker 
than the less important parameters. If the 
iterations are aborted before V, has been 
minimized, the less important parameters will 
thus hang on around the initial value OS. This is 
pretty much the same result as if we had 
minimized the regularized criterion (47). Incre- 
asing the number of iterations i thus corresponds 
to decreasing the regularization parameter 6. 

More precisely, the link is as follows (when 
quadratic approximations are applicable): 

(I - /.K’V”)i - 6(6Z + V-l, 

so, as the iteration number increases, this 
corresponds to a regularization parameter that 
decreases to zero as 

log s - -i. (61) 

An increasing number of iterations is therefore 
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Fig. 4. An illustration of back-propagation. The graph on the left encodes a formula in the way expressions are encoded into 
abstract graphs in syntactic analyzers in computer science: for instance, the graph here encodes g(cp, 0) = xi q *gi(cp, p,) (where * 
denotes multiplication), i.e. the general one-layer network formula (19). Nodes of this graph can be interpreted both as operators 
(e.g. f, *, gi) and as the evaluation of the expression encoded by the subtree located below this node. The triangle ‘same pattern’ 
indicates that each component q, of cp could be the result of evaluating again the same function encoded by the same graph. This 
would immediately encode a two- and then multilayer network. On the right-hand side, we have expanded once the ‘same 
pattern’, showing the case of two layers. We have shown by thick lines the paths linking the root g(cp, 0) to one particular 
parameter, say Pk. The semantics of the thickening are as follows: each node on a thick path that is an operator (e.g. +, *, g,) is 
replaced by its partial derivative with respect to the node just below it on the thick path (here, we regard such a node as the 
evaluation of the expression encoded by the subtree located below it). For instance, in the figure gi is replaced by 8gJ&pt*) and g, 
by 8g,&a&. By the chain rule for differentiation, it turns out that the graph on the right-hand side encodes the partial derivative 
ag(cp, 0)/a&! This graphical representation also explains why intermediate calculations can be shared for different partial 
derivatives, and this is indeed the nice feature of ‘back-propagating’ the gradient. This presentation is due to G. Cybenko (see 

Saarinen ef al., 1993). 

equivalent to a larger model structure-more 
‘used’ parameters. The concept of overtraining is 
consequently just a reflection of the well-known 
concept of oue$t, defined in Section 6.4. 

How do we know when to stop the iterations? 
As i + m, the value of the criterion VN will of 
course continue to decrease, but as a certain 
point the corresponding regularization para- 
meter becomes so small that increased variance 
starts to dominate over decreased bias. This 
should be visible when the model is tested on a 
fresh set-the validation data or generation data. 
We thus evaluate the criterion function on this 
fresh data set, and plot the fit as a function of the 
iteration number. A typical such plot is shown in 
Fig. 8 in Section 10.1. This method of 
terminating the iterations when the model fit 
(evaluated for the validation data) starts to 
increase will be called stopped search. 

Regularization implemented as stopped search 
is called implicit regularization, in contrast to the 

explicit regularization obtained by minimizing 
the modified criterion (45). 

7.5. Local minima 
A fundamental problem with minimization 

tasks like (34) is that V,(O) may have several or 
many local (non-global) minima, where local 
search algorithms may get caught. There is no 
easy solution to this problem. It is usually 
well-used effort to spend some time to come up 
with a good initial value fi(‘) at which to start the 
iterations. This is, however, not a realistic option 
in most nonlinear black-box problems, where 
little prior knowledge is available. The best thing 
in such cases is usually to choose d(O) at random 
in such a way that the support of the basis 
functions covers the interesting domain of the 
input space. Model structures using constructive 
estimation methods give some more options, 
which are described in Section 8. 

Other than that, only various global search 
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strategies are left, such as random search, 
random restarts, simulated annealing and genetic 
algorithms. 

8. ESTIMATION ALGORITHMS: CONSTRUCTIVE 
METHODS 

Recall that in our general model structure (32) 
the total parameter vector 8 is composed of two 
different parts: the coordinate parameters (Yk on 
the one hand, and the dilation and location 
parameters (fik, Yk) on the other. For fixed 
parameters (Pk, Yk), minimizing (34) (0 collects 
all the (Yk in this case) is a linear least-squares 
problem. Such problems are very ‘nice’ in that 
efficient algorithms exist, no search has to be 
performed, and there is no problem with local 
minima. This assumes that the VdUeS of (Pk, yk) 

(and thus the parameterized basis functions) 
have been ‘chosen’ in some efficient manner. 
This approach is feasible only with some 
particular basis functions that come with a 
natural choice of the values of (&, Yk). For 
instance, wavelets are very well suited for 
applying such approach. In fact, even in such 
situations, the choice of (j&, yk) is often partially 
influenced by the observed data. For the 
algorithms considered in this section, data are 
used for selecting the values of these parameters 
from some practically finite set. This finite set of 
the values depends on the chosen basis functions 
and possibly on prior knowledge on the 
application. We refer to such approaches for 
model estimation as constructive methods. 

Wavelets play an important role for construc- 
tive methods, so this section is mainly concentr- 
ated on wavelet-based models. 

8.1. Orthonormal wavelet decomposition and 
shrinking algorithms 

Wavelets are a very interesting class of 
functions because of their special properties. In 
this subsection we first introduce some basic 
concepts about orthonormal wavelet bases, then 
we describe the wavelet shrinking techniques 
that make wavelets powerful nonlinear 
estimators. 

8.1.1. Orthonormal bases of wavelets. 
Multiresolution analysis introduced by Yves 
Meyer and Stephane Mallat and further 
developed by Ingrid Daubechies provides ortho- 
normal bases of &([w) of the form? $j,k((p) = 
{2’/*4!42’cp - k):j, k E Z}, i.e. each element of the 
basis is a translated and dilated version of a 

-F In the wavelet literature wavelets are usually considered 
as functions of x and denoted by e(x). Here we consider 
wavelets as particular basis functions, and use #(cp) to denote 
wavelets as functions of the regression vector q. 

single mother wavelet $I. For the time being, let us 
consider only scalar cp E R. For a function 
f E L2([w), the inner product (f, $hj,k) performs 
zooming on f over a 0(2-j) width interval 
centered at the point 2-jk. Thus large j 
corresponds to checking the function f at fine 
scales. This implies that a local singularity of a 
function f will affect only a small part of its 
coefficients in this wavelet basis. This is the main 
difference with the Fourier basis: a local 
singularity of f would affect the whole Fourier 
representation. Thus, using this basis, each 
f E L,(R) is expanded ast 

i.e. L,(R) is decomposed into the doubly infinite 
orthogonal sum L*(R) = $jEh 4, where Wj = 
span {$j,k, k E Z}. In this expansion j is the scale 
index, which ranges from infinitely coarse up to 
infinitely fine, and k is the translation index. 
Now, it is often useful in practice not to consider 
this double-sided expansion, but to use instead a 
one-sided expansion where all scales j < 0 are 
collapsed into a single basic ‘low-resolution’ 
subspace of L*, i.e. we set V, = @jjCO Wj. This 
can be achieved by associating with the mother 
wavelet $ a so-called ‘father wavelet’ (also 
termed ‘scale function’) 4, whose translated 
versions suffice to span all scales j < 0. Thus the 
expansion with which we shall actually work has 
the form 

f = kzz aOk+Ok + c ff$$jk 

j?O. k=E 
L- 

izerO scale’ v,, ‘finer scales’ @,?,) w, 

$,,k((P) = 2’/*‘4’(2j(P - k), 
(62) 

Ly Ok = (f, +O,kh 

and (62) is an orthonormal expansion. We refer 
the reader to Juditsky et al. (1995) for a more 
formal introduction to this material, as well as 
the discussion of smoothness properties of 
wavelets thus constructed. Remark that the 
dilation parameter 2j and translation parameter k 
of a wavelet correspond to the parameters p and 
y of our generic ‘mother basis function’ as first 
introcuced in (20). 

The very strong point of such orthonormal 
wavelet expansions is that coarse-scale 
coefficients can be recursively computed from 
fine-scale ones, and vice versa. Let us explain 

t The wavelet coefficient (J I&) is usually denoted by pjk. 
Here we use cyjt in order to keep consistent our notations a 
and p. Note that (. , .) denotes the inner product in Lz. 
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this. If g(cp) E @i<j,, y then clearly g(29) E 
$j<j(,+l y. Hence, since the family {&k} spans 
VO, then ((p(2~ - k)} spans the next finer scale 
V,CB W,, i.e. we have 

4(V) = fi F h&(2P - k), 

(63) 

for suitable (hk) and (gk). Equations (63) imply 
that, for f E L,(R), 

ajk = (f, 4,k), a~ = (f, $jk) (64) 

obey the following fine-to-coarse recursions 

(65) 

(66) 

The recursions (65) and (66) are used to 
compute recursively from fine scales to coarse 
scales the orthonormal wavelet decomposition, 
with aj,h as initial condition (the index j0 denotes 
the finest scale in these recursions). Assume that, 
in addition, the scale function 4 is selected so 
that the computation of inner product (f, ~$~~&k) in 
(64) can be performed efficiently. Then (64)- 
(66) together give a highly eficient procedure for 
computing the wavelet decomposition of f; see 
Juditsky et al. (1994) for an efficient computation 
of the inner product (f, ~jk). In addition, (65) 
and (66) can be inverted to yield the 
coarse-to-fine recursion 

ff,k = 7 hk-2,(Yj-l.lfgk~21~i*_L,l. (67) 

For f E I$:.,,, we have, by the definition of this 
space, 

and, for j,,>O, since r/;.,,=V0@W0G3W,@...CE 

y,,- 1 I 

f = 7 aOk+Ok + 
Osgc, k 4 *jk. 

(69) 

The formulae (65) and (66) allow us to switch 
from the representation (68) to representation 
(69). The latter is generally much more compact, 
since, when f is smooth, most (~3 are negligible. 

We now move on discussing the multidimen- 
sional case. There exist two main types of 
constructions of the wavelet basis with dilation 
factor 2 in R” (Daubechies, 1992, Section 10.1). 
A first guess simply consists in taking tensor- 
product functions generated by d one- 
dimensional bases: 

This construction has the drawback of mixing 
different resolution levels jj. Alternatively, if 
such a mixing is not desired, we proceed as 
follows. We introduce the scale function 

@a(p) = 4(q1) ‘. . x +((Pd) (71) 

and the 2” - 1 mother wavelets Y(“(cp), i = 
1 2” - 1, obtained by substituting in (71) 
S&L ’ ~(cpi)s by $(pj)S. Then the following 
family is an orthonormal basis of L2(Rd): 

@Ok((P), y;:‘((p), . . . , wj,““-“($+, 

j E No, k =[k, . . kd] E Zd, (72) 

where No = N U 0, and 

@,/k(q) = 2id’2@(2i(p, - kl, . . . , 2j$,d - k,), 

Y$‘(cp) = 2jdi2@(2j~, - k, , . , 2jqd - kd). 

Note. As (72) shows, constructing and storing 
orthonormal wavelet bases become of prohibi- 
tive cost for large dimension d. This is the main 
limitation in using the otherwise very efficient 
techniques relying on orthonormal wavelet bases 
(and their generalizations). 

8.1.2. Wavelet shrinking algorithm. Assume 
that a N-sample of estimation data is available: 

{(y(t), q(t)) :y(t) = go(cP(t)) + e(t), t = 1, . . . , N, 

where go is some unknown ‘true model’, p(t) and 
e(t), t = 1, . . , N, are i.i.d. sequences of random 
variables, and Ee(t) = 0, Ee2(t) = A. We assume 
for the time being that q(t) is uniformly 
distributed on [0, lid. For go E L2, recall the 
(multidimensional) wavelet expansion 

&1(p) = c aOkaOk((P) 

ktl 

+ 2 c 2g’ (Y;(“Y;&), (73) 
,=O ktZ” /=I 

where 

a0k = gO(~)@Ok(~) da 
I 

*co = 
ajk go(d’%‘(d dv. 

(74) 

To construct an estimate of go, a first idea 
consists in using the law of large numbers and 
replacing in the expansion (73) the coefficients 
(Ye and ‘Y,$‘) by their empirical estimates 

&k(N) = $ $ y(t)@Ok(&)), 

, I 

G;;)(N) = $ g y(t)Y$)(q(t)). 

(75) 

f I 
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Note that the assumption that cp(t) is uniformly 
distributed has been used at this point. This 
brute-force estimate is impractical in many 
points: q(t) is not generally uniformly distributed 
in real life, most of the Y$) would have just no 
cp(t) sample in their support, so that empirical 
averages s);)(N) are not defined, and, finally, 
most of the remaining 3$(N) would not be 
significantly different from ‘noise level’ and 
should probably be discarded. All these issues 
are addressed in the following procedure (for its 
mathematical justification, see Juditsky et al., 
1995). 

1. 

2. 

Select relevant scales. Obviously, in,ortF to 
compute the empirical coefficient (Y jk, we 
require that at least several observations q(t) 
hit the support of Y$)((p). Statistical laws of 
log log type guarantee that this would 
generically hold for scales that are not too 
fine, more specifically for j 5 jmax, where 

N 2N - ( 2&n.X ( - 
lnN- -1nN’ 

Thus, by brute force, we set 3);) = 0 for 

j > imax. Note that we have not used the 
assumption that q(t) is uniformly distributed 
at this point. 

Collapse data into a synthetic regularly 
sampled record. Assuming that q(t) has a 
smooth enough density, we shall approximate 
it by a constant over each bin 

Ak = [2-jmark,, 2-jmax(kI + l)] x . . . 

x [2-j+& 2-jma& + l)] 

of length 2-djmaX. Then, since we know 
(statistically) that each such bin has enough 
data, we can (very coarsely) collapse the data 
within each bin into a single representative 
data point by taking simple averages, 
namely? 

g$~,k) = EC;“=, Y(t)lt’p(Q~A~l 
EL, 1 IP(~)E 

will be the synthetic output associated with 
the kth bin Ak. Then we set 

‘j,,,,k = 
2&& - (N,k) 

go ) 

i.e. we identify (up to the scaling factor) g$/“rk) 
with the father wavelet coefficients of our 
unknown function to be estimated, taken at 
the finest scale imax. 

3. Use fine-to-coarse recursions to get the 

t 1, is the indicator function, i.e. 1, equals 1 if A is true, 0 
otherwise. 

wavelet expansion. At this point we have 
constructed synthetic input-output pairs, 
where the input is the considered bin and the 
Output iS the associated Bj,,,,k estimate. 
Getting the full wavelet expansion is then 
performed by applying to these synthetic data 
the recursion formulae (65) and (66). We use 
the multidimensional version of the filters 
(65) and (66) to compute hjk, 

--a0 
Cl’ jkt 

j=O ,..., imax--l,Z=l ,..., 2”-1: 

&jk = c hi-zkGj+l.r, 
I 

4. Shrink junk below noise level. Now what we 
have at this point is an estimate of the full 
wavelet expansion of our unknown function, 
up to scale imaX. Owing to the local nature of 
wavelets, the expansion coefficients are 
significantly different from zero only for 
wavelets having significant variations of go in 
their supports. Thus most of the coefficients 
in this expansion would basically contain only 
noise, with no relevant information. Since our 
wavelet basis is orthonormal, it can be shown 
that significance of wavelet coefficients can be 
tested separately for each coeficient, by 
comparing them with suitably selected thr- 
esholds (cf. Juditsky et al., 

<(I) 
1995). Thus we 

shrink the estimates (Y jk according to 

5. 

where Aj is a properly selected threshold. 

Use coarse-to-fine recursions to reconstruct the 
finest scale. We are now ready to use the 
‘inverse’ filter (67) to obtain cZ!~,,,,~: 

and we finally set 

Steps l-5 constitute our algorithm. Note that 
most of its computational burden is concentrated 
into the fine-to-coarse and coarse-to-fine recur- 
sions, for which packages are available (see e.g. 
Taswell, 1993). Altogether, this is an extremely 
efficient algorithm for small dimensions (typi- 
cally d 5 3). 

8.2. Techniques of basis functions selection 
Orthonormal wavelet bases are really a very 

nice and restricted class of basis functions related 
to very fast estimation algorithms and efficient 
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shrinking algorithms. However, they are practi- 
cally applicable only to problems with a small 
number of regressors and reasonably distributed 
data. In this subsection we introduce the 
techniques of basis function selection, applicable 
to a less restricted class of basis functions, 
including non-orthogonal wavelets. These tech- 
niques can handle applications with a moderately 
large number of regressors and sparse data. 

With these techniques, we shall be able, based 
on observed data, to select the values of Pk and 
yk (typically they are dilation and location 
parameters) from a finite set 3, or, equivalently, 
to select basis functions gk((P, &, Yk) from a 
finite set of basis functions: 

+?= ii?k((P, Pk, rk):(Pk, -Yk) E 3). (77) 

We shall refer to % as the basis function set in the 
following. 

We first discuss how to construct the basis 
function set % before introducing the techniques 
of basis function selection. 

8.2.1. Construction of the basis function ser. 
For simplicity, we consider the case where the 
basis functions are parameterized versions of a 
single ‘mother basis function’ K, i.e. 
gk( q, &, Yk) = K( Cp, Pk, yk). The construction Of 
9 depends on the form of K. Typically @k and yk 
correspond to the dilation and translation 
parameters respectively; and the model is only to 
be estimated in some finite domain of the 
regression vector rp, up to some resolution level. 
This can suggest the choice of 5% Below we 
discuss three typical examples. 

One-hidden-layer sigmoid networks. Here 
gk(q) = u&q + yk). The parameters Pk and yk 
should be chosen so that the non-flat part of 
fl(&q + yk) stays inside the domain of interest, 
and the values of (@k, Yk) are well ‘distributed’. 
However, there is no clear idea for this 
‘distribution’. For this reason, it seems that the 
basis function selection techniques are nor well 
suited for sigmoid networks. 

Radial basis function (RBF) networks. Here 

gk(p) = r@k((P - yk)h where r is a radial 
function. There are two possibilities for choosing 
the values of yk (the centers of the RBFs): take 
the values of Yk on a uniform lattice in the 
regression vector space, or let the Values of 3/k be 
equal to the ‘observed’ values of the regression 
vector. It is more difficult to choose the values of 
Pk. Adaptive clustering or vector quantization 
techniques can be used for this purpose (Poggio 
and Girosi, 1990). 

Wave/et networks. Here g(cp) = $(&((p - yk)), 

where Ic, is a wavelet function. The choice of fik 
and yk (the dilation and translation parameters) 
is very well suggested by the wavelet transform. 
Typically, the values of Pk and yk form a regular 
lattice, as in wavelet bases and frames. 

After C% has been chosen, the corresponding 
basic function set Y is given by (77). 

The construction of 9 may have some 
practical limitations when the dimension d of the 
regression vector cp is large, since typically the 
size of 9 increases exponentially with d. 
However, for applications of large regressor 
dimension, the estimation data are often sparse 
in the space of regression vectors. This feature of 
the data should be taken into account for the 
construction of 9. For instance, if the basis 
functions are generated from a local ‘mother 
basis function’ K( .), many basis functions in % 
constructed in some regular way do not contain 
any (or contain few) estimation data in their 
effective supp0rt.t Such basis functions can be 
immediately rejected. This will limit the size 
of 5% 

8.2.2. Basis function selection algorithms. 
Assume that the basis function set 3 has been 
chosen. Now the problem is, given a set of 
estimation data as defined in (33), how to select 
n basis functions from 9. This is a classical 
problem in regression analysis (Draper and 
Smith, 1981). For a given value of n, selecting n 
optimal basis functions could, in principle, be 
performed via an exhaustive search that would 
consist in examining all the possible combina- 
tions of n basis functions from 9. The number of 
all possible combinations is usually very large. 

Some special constructions of 3 result in 
orthogonal basis functions. In such situations the 
basis function selection problem can be solved in 
a very efficient way. The wavelet shrinking 
algorithm described in Section 8.1 is a very 
spectacular example. Even when the basis 
functions are not strictly orthogonal, but close to 
orthogonal, applying the shrinking technique can 
also give reasonable results. The near-tight 
wavelet frames (Daubechies, 1990) are typical 
examples of such almost orthogonal basis 
functions. 

In the general case where the basis functions 
in % are not orthogonal, in order to overcome 
the combinatorial complexity of the exhaustive 
search, three different heuristics are reviewed in 
the following; details of these algorithms can be 
found in Zhang (1994). 

t The term ‘effective support’ is used instead of ‘support’ 
to deal with the case of non-compactly supported basis 
functions. 
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The residual based selection (RBS). The idea of 
this method is to select, for the first stage, the 
basis function in % that best fits the estimation 
data, then repeatedly select the basis function 
from the remainder of % that best fits the 
residual of the previous fitting. In the literature 
of classical regression analysis this method is 
referred to as stagewise regression procedure. 
See, for example, Draper and Smith (1981). 
Recently it has been used in the matching 
pursuit algorithm of Mallat and Zhang (1993) 
and the adaptive signal representation of Qian 
and Chen (1994). 

Stepwise selection by orthogonalization (DO). 
The RBS method does not explicitly consider the 
non-orthogonality of the basis functions in %. 
The idea of this alternative method is to select, 
for the first stage, the basis function in G!? that 
best fits the estimation data, then repeatedly 
select the basis function from the remainder of 3 
that best fits the estimation data while combining 
with the previously selected basis functions. For 
computational efficiency, later selected basis 
functions are orthogonalized to earlier selected 
ones. It has been used in radial basis function 
(RBF) networks and other nonlinear modeling 
problems in Chen et al. (1989, 1991). 

Backward elimination (BE). In contrast to the 
previous two methods, the backward elimination 
method starts by building the model using all the 
basis functions in %, then eliminates one basis 
function per stage, while trying to deteriorate the 
model fit as little as possible. A recursive scheme 
between the elimination stages can be used to 
reduce the computational cost. This method is 
computationally expensive when %’ is large. 

8.2.3. Continuous wavelet transform in com- 
bination with basis function selection. Applying 
the above mentioned techniques of basis 
function selection to non-orthogonal wavelets 
yields an interesting family of models called 
wavelet networks (Zhang and Benveniste, 1992; 
Zhang, 1994). Though they are computationally 
less efficient than the wavelet shrinking algo- 
rithms in low-dimensional cases, they allow one 
to handle problems of moderately large dimen- 
sions. The software package of wavelet networks 
in Matlab language is available via anonymous 
FTP (Zhang, 1993). 

We need to recall some basic concepts of the 
continuous wavelet transform at this point. We 
only consider radial wavelets here. The con- 
tinuous wavelet transform and its inverse 
transform of a function f are given by (79) and 
(80) respectively. These transforms use two 
functions $(cp) and +(cp) E L@!‘), both radial 

(i.e. depending only on 11~11, where 11. II denotes 
the Euclidean norm in W”), known as the 
synthesis and analysis wavelets. More specifically, 
let $ and 4 be radial functions satisfying 

I 

3c 
a-‘$(aw)4(ao) da = 1 VW E IWd, (78) 

0 

where $(u) and &(a) denote the Fourier 
transforms of $(cp) and $(cp) respectively. Then, 
for any function f E Lz(Rd), the following 
formulae define an isometry between L2(Rd) and 
a subspace of L,(R” X R,) (Daubechies, 1992): 

u(a, t) = a’+“* 
I 

f G++#G(~ - t)) dv, (79) 

f ((o) = 1 u(a, t)+(a(cp - t))a”-I’* da dt, (80) 

where a E lR+ and t E Iw” are the dilation and 
translation parameters respectively. 

As discussed in detail in Delyon et al. (1995) 
and Juditsky et al. (1995) the reconstruction 
formula (80) immediately explains why 
dilated/translated versions of the synthesis 
wavelet 1+5 are good candidate basis functions. 
Rewrite this formula as 

f(q) = 1 u(a, t)$(a(cp - t))a”-“* da dt 

=/ad’**(a(p-t))W[u(a,t)l 

X a(dP’)‘2 lu(a, t)] da dt 

= $ 
I 

ad’2+(a(cp - t)) sign [u(a, t)] 

X w(a, t) da dt, 

where we have renormalized u(a, t) by a 
constant factor C so that the function w(a, t) = 
Cacd-‘)‘* Ju(a, t)l can be considered as a prob- 
ability density function. Draw n independent 
random samples (a,, ti)i=l....,n with density 
w(a, t). Then construct 

fn(q) = i $ a:“*+(aAp - tJ) sign [u(ai, t;)], (81) 
I 

which, thanks to the law of large numbers, 
converges in L2 to the true function f when 
n + ~0. This justifies using dilated/translated 
versions of the synthesis wavelet tc, to build the 
basis function set %. However, implementing the 
above procedure would require the estimation of 
the density function w(a, t), which is computa- 
tionally expensive. 

Results reported in Daubechies (1990) and 
Kugarajah and Zhang (1995) about the so-called 
wavelet frames justify using wavelet families of 
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the form {I,G((Y&G - k/3,) : j E Z, k E Hd}. 
Therefore, in practice, wavelet basis function sets 
3 (as introduced in (77)) are constructed from 
wavelet frames. Then, applying the algorithms of 
basis function selection yields wavelet networks 
(Zhang, 1994). 

9. ENCODING PRIOR INFORMATION VIA 
SYNTACTIC FUZZY MODELS 

We have claimed in Section 4 that fuzzy 
modeling can be seen as a particular choice of 
basis functions. We shall make this point clearer 
in this section. In addition, we discuss in detail 
what is the add-on provided by fuzzy modeling. 
We first introduce fuzzy models such as typically 
used in fuzzy control (Lee, 1990). Several 
presentations are possible, (see e.g. Takagi and 
Sugeno, 1985; Sugeno and Yasukawa, 1993; 
Zadeh et al., 1994). The presentation we give 
here is slightly heterodox, but is simple and 
consistent. 

9.1. Introduction to fuzzy logic also written 
9.1.1. Fuzzy sets. Consider scalar input vari- 

ables generically written as p. A fuzzy set on R is 
defined by a linguistic label A, and its 
membership function CL*: cp E RHEA E [0, 11. 
The membership function p, is the mathematical 
meaning of ‘fuzzy set A'. Thus, for each actual 
value of cp, the statement ‘q is A' has a value 
equal to ~~(40) such statements are premises of 
so-called ‘fuzzy rules’. A typical form of such 
statements is ‘cp is large'. Be careful that this 
statement does not convey any information 
unless the membership function pA of the fuzzy 
set large is specified. A frequently used form 
for membership functions is just a symmetric 
triangle, with parameterized width (‘dilation’) 
and location, as illustrated by Fig. 5. 

is a macro that expands into 

(y is B) or not (cpis A) 

In the sequel we shall encode the ‘and' as the 
product: and (u, u) = uu, with corresponding 
codings for the ‘not, or'. Finally, the implica- 
tion is expanded as follows. 

Denote by PA the membership function 
associated with fuzzy set A, and by /.LA+B the 
membership function of ‘if cp is A then y is B'. 
Using the formulae 

(u+u)=(u or not u)=u+(l-u)-u(l-u) 

= 1 - u + uu, 
9.1.2. Fuzzy operators. Fuzzy sets can be 

combined using the ‘and, or, not ’ operators of 
first-order predicate logic. This allows one to 
describe the combination of membership func- 
tions using syntax. For instance, 

we obtain an expression of implication (Reich- 
enbach implication, in the literature): 

(cpl is A,) and (qz is A,) . . . and (qais AdI 

is a fuzzy set involving the vector (cpl, . . . , (PJ. 
This implication models a certainty rule of the 
form the more ‘cp is A', the more certain ‘y is B', 
(see Dubois and Prade, 1992). 

small medium large 

Fig. 5. Fuzzy sets. This picture shows fuzzy membership 
functions corresponding to ‘small’ etc. The corresponding 
membership function is in fact of the form ~(0, x), where 0 
is a parameter specifying the exact location, and width, 

within some parametrized family of basis functions. 

The keyword ‘and' is a combinator of fuzzy sets, 
which must be defined formally in terms of 
combination of membership functions. Similarly, 
the operators ‘or' and ‘not' should be 
accordingly defined. Several choices have been 
proposed by various authors (Dubois and Prade, 
1992), the most widely used are 

and (u, u) = min (u, u), or (u, u) = max (u, LJ), 

and(u,u)=uu, or (u, u) = u + u - uu, 

and (u, u) = max (0, u + u - l), 
(82) 

or (u, u) = min (1, u + u) 

(corresponding definitions for ‘and' and ‘or' are 
written on the same line) and 

not(u)= 1-u. 

We now try to generalize the Boolean 
implication operator in continuous-valued logic.? 
As usual in logic, implication 

(cp is A) implies (y is B) 

if cpis Atheny is B 

= I- PA(P)D - /-b(Y )I. (83) 

9.1.3. Fuzzy reasoning: modeling ‘fuzzy maps’ 
via fuzzy rules. Fuzzy rules are statements of the 
form 

ifcpisAthenyisB 

t This is the point where we deviate from the usual 
presentation: in the fuzzy literature, implication is often 
encoded as an ‘and’, and the modus ponens mechanism is 
modified accordingly. We preferred this presentation, since it 
is fully consistent and in accordance with the usual predicate 
calculus. 
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Note that more complex premises can be used, 
using ‘and, or, not'. The modus ponens is a 
mechanism in logic that maps predicates into 
predicates. Its counterpart in fuzzy logic allows 
an approximate application, so that conclusions 
can be drawn even though the fact does not 
agree exactly with the first part of the rule. It can 
be written as 

rule: if cp is Atheny is B 

fact: cp is A' 

conclusion: y is B' 

Here the fact ‘cp is A" can be seen as the ‘input’, 
the conclusion ‘y is B" as the ‘output’, and the 
fuzzy rule ‘if cp is A then y is B' is the ‘map’. 
Thus, modus ponens is a mechanism that 
combines membership functions and yields a 
membership function. A typical example could 
be that‘9 is A' is ‘The temperature is high', 
and that ‘cp is P." corresponds to ‘The 

temperature is very-high'. 

In the general case the mathematical transla- 
tion of the fuzzy modus ponens rule (Dubois and 
Prade, 1992) is defined as 

&f(y) = max {pa,(~) and I-LG&CP, y)), (84) 
m 

where elimination of 40 has been performed via 
maximization. Note that, in general, facts and 
conclusions are not ordinary numbers, but rather 
are fuzzy sets. 

9.1.4. Inference with crisp inputs. Now we 
discuss the particular case of fuzzy reasoning 
with crisp (input) fact statement, which is 
directly related to our general nonlinear 
black-box model formulation. 

The fact A' in a statement ‘cp is A' ’ is crisp if 
the membership function of A' is such that 

Pi’ = 1 if cp = qo, and pA,((p) = 0 otherwise, 
where cpo is an ordinary value. In this case the 
modus ponens mechanism (84) reduces to 

= I- ~-~.Jcpo)[l- E*B(Y)I (by (83)). (85) 

Note that, even in the case of crisp input fact, 
the conclusion B' is in general a fuzzy set. 

9.2. Fuzzy rule bases as models 
Now, what does all this mean in a 

modeling/identification context? We shall first 
describe how sets of rules can be used to state 
the behavior of a system. The goal is to show the 
connection with more conventional models, like 
(3), and then also see how such fuzzy models can 
be parameterized like (14) and (19). 

9.2.1. Fuzzy rule bases. A ‘fuzzy rule basis’ is 
a collection of fuzzy rules of the form, say 

if (qol is A;,,) . . . and icp, is A,,,) then (y 
is B,) 

(86) 

if ('pl is A,,:) . . . and (qd is A,,,) then (y 
is BP) 

where the fuzzy sets A;, i are doubly indexed: i 

is the index of the input coordinate, and j is the 
index of the rule. We denote the membership 
functions by p_ ,(tpJ and pB (y) respectively. 

A simple example: a DC motor. Consider an 
electric motor with input voltage u and output 
angular velocity y. We should like to explain 
how the angular velocity at time t, i.e. y(t), 
depends on the applied voltage and the velocity 
at the previous time sample. That is, we are 
using the regressors q(t) = [q,(t) cp2(t)JT, where 
q,(t) = u(t - 1) and cp2(t) = y(t - 1). Let us now 
device a rule base of the kind (86), where we 
choose A_, ; and A,, 1 to be ‘low-voltage’, Ai, 1 

and A,,, to be ‘high-voltage’. We choose A,, z 

and A,,, to be ‘slow-speed’, while A,, 2 and A,, r 
are ‘fast-speed’. The membership function for 
‘low-voltage’ is taken as pu,_, _(cp,) = p((p,, 3,4), 
where 

1 for x < a, 

for a<x<b, (87) 

b for bsx. 

The membership function for ‘high voltage’ is 
taken as CL,,,?,. = 1 - pA, :. The membership 
functions for slow and fast speed are chosen 
analogously, with breaking points 8 and 
15 rad s-‘. The statements B, about the outputs 
are chosen to be triangles with vertices located at 
5, 10 and 20 rad ss’ respectively. We thus obtain 
a rule base: 

If vi(t) is low and q,(t) is slow then 

y(t) is low 

If q,(t) is low and q2(t) is fast then 

y(t) is medium 

If PI(t) is high and p2(t) is slow then 

y(t) is medium 

If q.(t) is high and q2(t) is fast then 

y(t) is high 

9.2.2. Combining rules. The rule base (86) is 
at first sight quite different from the models we 
have discussed in the other sections of this 
article. To see the connections, we shall now give 
its mathematical translation. 

Combining fuzzy rules within our fuzzy rule 
basis is interpreted as taking the ‘and' of their 



1714 J. Sjbberg et al. 

conclusions.? Then the fuzzy rule basis (86) 
means 

y is Bi and. . . andy is BA 

where the fuzzy sets Bi are defined according to 

(85). 
Expressing the ‘and' combinator as the 

product of membership functions, we get 

)(LB’(Y) = ,Q /-&t(Y) 

= fi (1 - It PA,,,km - PdYN} 
j=l i=l 

(by (85)) 

= 1 - 2 [l - PdYdI PA. (CPA 
/=1 ;=I ‘I- 

where we have used the approximation 
&‘=, (1 - LQ) = 1 - XT=, u,, which is valid for 
small Uj and large p. 

Now, assume that the membership functions in 
the rule basis are subject to the identity 

This will be true if the membership functions 
defined in each input domain form a strong fuzzy 
partition, i.e. Xj ~~,,,((p;) = 1 holds for all qoi, and 
if the rule basis is ‘complete’, i.e. it covers all the 
cases in terms of the fuzzy sets defined in the 
input domains (it is easy to verify that the DC 
motor example above obeys this requirement). 
In this case we have 

I-LB’O) > = 2 PB,o) IfI PA,, ,(cP,). (89) 
/=I i=l 

9.2.3. Defuzzification. At this point, setting 

cp = [cpl . . . Q], (89) defines a function mapping 
points cp E lRd into fuzzy sets. To get a function in 
the usual setting R’I+ R, we perform the 
defuzzification of pB(y), using the so-called 
‘height method’ (see Lee, 1990; Dubois and 
Prade, 1992). Using property (88) again, we 
finally get the ordinary function 

Y = Ii Yii I? l-b, ,(cPi)l ’ 9 Yiwi(qO) = &T(P), t90) 
j=l .\,=I / j=l 

where cp = [cp, . . qd], yj is the point at which 

P-LB, reaches its maximum value, and the 
definition of the weight functions Wj(q) is 
obvious. If (88) does not hold, then the above 
defuzzification formula is modified accordingly 
(Wang, 1992): 

y = g(cp) = Z=l Yjwj(q) 
ET=1 Wj(q) f 

(91) 

A rule basis may be directly built with crisp 
conclusions, i.e. B, are ordinary values in (86). In 
this case no defuzzification is needed. 

t From our choice for implication, whereas if implication is 
encoded as an ‘and’, 
aggregated by an ‘or’. 

intermediate results ~~~0)) are 

9.3. Back to the general black-box formulation 
With (91) or (90) we are now back to the 

predictor model form we discussed in Section 2: 
a mapping from the regression vector cp to the 
(predicted) output. 

Now, if some or all of the rules in the rule 
base need ‘tuning’, we may introduce parameters 
to be tuned. These parameters could be all or 
some of the numbers Yi in (90) or in (91). For 
example, if y, is unknown, it could be replaced by 
an adjustable parameter c+ 

Parameters can also be introduced in the 
membership functions. Usually, fuzzy set mem- 
bership functions are parameterized functions of 
the form 

E.LA(VD, Pt Y) = /-@(cp - Y)), (92) 

where I is a given function with values in 
[0, 11, p is a dilation factor and y is a translation 
factor, and the pair (p, y) encodes the fuzzy set 
A. Mostly used is the piecewise-linear function p 
such that ~(1) = 1 and I = 0 for cp outside 
the interval [0,2]. 

When parameters are introduced in this way, 
the model (90) takes the form 

Y = g(cP, e, = ,z, (yjgj(40, P* Y), (93) 

where the ‘basis functions’ gj are obtained from 
the parameterized membership functions as 

gi(Vj Py Y) = JfJ PA,, (Pji(9i - Yji)). (94) 

We are thus back to the basic situation of (19) 
and (20), the only difference being that the basis 
functions g, are created by dilation and 
translation of a basic function E_L((P) in a more 
complex way than in (20). The estimation of the 
free parameters 8 in (93) still follows the general 
theory. 

If the fuzzy partition is fixed and not 
adjustable (i.e. /? and y are fixed) then we get a 
particular case of the kernel estimate (29). 
Identified fuzzy models are often referred to as 
‘neuro-fuzzy models’ in the AI literature 
(Glorennec, 1993), since the back-propagation 
procedure can be used for their training, as for 
neural networks. It is also proved that fuzzy 
models are universal approximators 
(Wang, 1992), which is not surprising. 

To summarize, fuzzy models are described by 
fuzzy rule bases, plus some additional para- 
meters that make vague statements such as 
‘large’ and ‘small’ precise in terms of member- 
ship functions. The fuzzy rule basis exhibits the 
structure of the model, plus some coarse features 
related to the location of the elementary 
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functions in the decomposition (90) or (91). Thus 
fuzzy models are just particular instances of the 
general model structure (19) with the advantage 
of providing the fuzzy rules as a way to describe 
some possibly available prior knowledge. In the 
experiments reported in Section 10, neuro-fuzzy 
modeling is used in the above sense. Also, in 
Juditsky et al. (1994) an extension of the classical 
fuzzy modeling syntax is proposed to encompass 
multiresolution model structures, such as wavelet 
decompositions or networks. 

10. SOME EXPERIMENTS 

In this section we present some application 
examples of nonlinear black-box modeling, in 
order to give the reader some practical insights. 
They cover dynamic system modeling, static 
system modeling and fuzzy system modeling. 

10.1. Modeling a hydraulic robot actuator 
In this section we shall study identification of a 

hydraulic actuator. We shall consider both linear 
models and nonlinear black-box ones, based on 
neural networks and wavelet networks. 

The data. The position of a robot arm is 
controlled by a hydraulic actuator. The oil 
pressure in the actuator is controlled by the size 
of the valve opening through which the oil flows 
into the actuator. The position of the robot arm 
is then a function of the oil pressure. A thorough 
description of this particular hydraulic system is 
given in Gunnarsson and Krus (1990). Figure 6 
shows measured values of the valve size u and 
the oil pressure y, which are input and output 
signals respectively. As seen in the oil pressure, 
we have a very oscillatory settling period after a 
step change of the valve size. These oscillations 
are caused by mechanical resonances in the 
robot arm. 

OUTPUT Xl 

INPUTLI 

:;\_:-_n.;;-1 

0 100 203 300 4w 500 600 

Fig. 6. Measured values of oil pressure (a) and valve position 

(b). 

A linear model. Following the principle ‘try 
simple things first’ gives an ARX model that 
predicts the output by the three most recent past 
outputs and the two most recent past inputs, i.e. 
the regression vector cp = [Y(l - 1) Y(t - 2) 
y(t - 3) u(t - 1) u(t - 2)lT, where y and u are 
the output and the input of the system 
respectively. In Fig. 7 the result of a simulation 
with the obtained linear model on validation 
data is shown. The result is not very impressive. 

A neural network model. Next, a NARX model 
based on an one-hidden-layer sigmoid neural 
network with 10 hidden units is considered, as 
described in Section 4. The same regressor as for 
the linear model is used, and this gives a model 
with 71 parameters. In Fig. 8 it is shown how the 
quadratic criterion develops during the estima- 
tion for estimation and validation data respec- 
tively. For the validation data, the criterion first 
decreases and then starts to increase again. This 
is the overtraining described in Section 7.4. The 
best model is obtained at the minimum, and this 
means that not all parameters in the nonlinear 
model have converged and hence the ‘efficient 
number of parameters’ is smaller than dim 8 = 
71. 

The parameters that give the minimum are 
then used in the nonlinear model. When this 
model is simulated on the validation data, it 
gives a root mean square (RMS) error of 0.467 
which is considerably smaller than the 0.942 
obtained with the linear model. 

A wavelet network model. Now another NARX 
model based on a wavelet network is considered 
to model the hydraulic actuator in a similar way, 
with the same regressors. The wavelet function 
used is $(cp) = (d - cpTq)e-VTV’2, with d = dim p. 

oq.It Y 1 Fii: 0.9419 
4 

3 n :i I 

1; 
-4 1 

0 100 200 300 400 500 600 

Fig. 7. Simulation of the linear ARX model on validation 
data. The solid line shows the simulated signal and the 

dashed line the true oil pressure. 
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Fig. 8. Sum of squared error during the training of the 
NARX model. The solid line shows the validation data and 

the dashed line here: estimation data. 

The dilation matrices Pk in (26) were chosen as 
multiples of the identity matrix. First, we apply 
the SSO procedure (see Section 8.2), which 
iteratively selects wavelets into the model. By 
Akaike’s final prediction error criterion, the 
number of wavelets nh is chosen to be 3, 
corresponding to 27 model parameters. Then the 
NARX model issue of this iterative construction 
is used to simulate the output of the robot arm 
on the validation data. The corresponding RMS 
error on the validation data is 0.647. Finally, the 
NARX model is refined by 10 iterations of the 
Levenberg-Marquardt procedure and is used for 
simulation in the same way as above. The result 
is depicted in Fig. 9, and the RMS error becomes 
0.579. We can see that the Levenberg- 
Marquardt procedure only slightly improved the 
result. This suggests that the iterative construc- 
tion method found a model parameter close to a 
local minima searched by the Levenberg- 
Marquardt procedure. 

4 

Fig. 9. Simulation of the nonlinear wavelet network NARX 
model on validation data. The solid line shows the simulated 

signal and the dashed line the true oil pressure. 

Other nonlinear structures. The two nonlinear 
models considered so far have been obtained by 
just plugging in the regressor into the nonlinear 
structure. We can also try some of the structures 
suggested in Section 3.4. 

The structure (16) based on the assumption of 
additive noise gives us a NARX model that is 
linear in past y(t). The parameter estimation 
becomes much easier with this model structure. 
Fewer parameters speeds up the numerical 
search, and a model that is linear in some of the 
regressors also has less of a problem with local 
minima. 

It turns out that, with this structure, it 
becomes advantageous to include two more 
regressors to those we had before, and the 
predictor model becomes 

j(t) = g(u(t - l), . . , u(t - 3)) 

+ a,y(t - 1) + . . + a,y(t - 4), (95) 

where g is modeled by a neural net with four 
hidden units. This gives a model with 25 
parameters which is about a third compared to 
the number of parameter of the first neural net 
model. This time there are no problems with 
overlearning during the estimation of the 
parameters. Simulating this model in the same 
manner as with the other models gave an RMS 
error of 0.400. 

If the linear part of the model (95) is replaced 
by a neural net then we obtain a NARX model 
consisting of two neural nets as in (17). This 
gives us more flexibility than if the model is kept 
linear in past y(t), but not quite so much as in 
the first model, where all regressors where fed 
into one large network. With three units in each 
neural net, one obtain a model with 35 
parameters. The RMS error for simulation on 
validation data became 0.328; the simulation is 
depicted in Fig. 10. 

10.2. Modeling a gas turbine 
Gas turbines are power motors, typically used 

in electrical power generators and aircrafts. 
Usually a gas turbine system is mainly composed 
of a compressor, one or several combustion 
chambers and an expansion turbine, as illustr- 
ated in Fig. 11. 

One of the purposes of our joint study with 
European Gas Turbine SA, Belfort, and 
Alcatel-Alsthom-Recherche, Marcoussis, was to 
develop a monitoring and diagnostics system for 
the joint system {combustion chambers, expan- 
sion turbine}. For this purpose, a semiphysical 
model has been developed that predicts the 
temperature profile of the exhaust gas. Owing to 
the phase shift of the gas in the turbine, this 
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Fig. 10. Simulation of the nonlinear neural network NARX 
model on validation data. The solid line shows the simulated 

signal and the dashed line the true oil pressure. 

semiphysical model is strongly nonlinear (Zhang, 
1991; Zhang et al., 1994). 

Eighteen thermocouples t,, . . . , t18 are in- 
stalled at the exhaust of the turbine to measure 
the output temperature profile. The compression 
rate 5 of the compressor and the rotation 
velocity w of the turbine are also measured. As 
suggested by the semiphysical model, we have 
chosen the average of the measurements of the 
18 thermocouples T,, 5 and w as regressors, i.e. 

cp = K 5 WIT, and the deviations from the 
average T, of the thermocouples y, = t, - T,, 
i=l,..., 18, as outputs of the black-box model. 

We have experimented with this approach on 
the data taken from a gas turbine of European 
Gas Turbine SA. The training data were 
collected during about 48 h. We have resampled 
the data and kept only 1000 measurement points 
for model estimation. For the sake of brevity, we 
shall show only the results concerning the first 
thermocouple. The models obtained are tested 
on another set of measured data, which we refer 
to as the validation data Z,. 

We have tested the semiphysical model, a 
linear regression model and wavelet network 
models. For the wavelet network model, we have 
chosen the radial wavelet function $(cp) = 
(d - (pTq)ePmTv’2, with d = dim cp. The number of 
wavelets used in the networks is 40, correspond- 
ing to 204 model parameters. We initialize the 
wavelet networks with each of the constructive 
procedures (RBS, SSO and BE, as described in 
Section 8.2), and optimize them with the 
Levenberg-Marquardt procedure. 

--I 

Fig. 11. A gas turbine system. 

The results are summarized in Table 1. The 
outputs corresponding to the validation data Z, 
predicted by the linear regression model and by 
a wavelet network model are plotted in Fig. 12. 
Though by the values of the RMS errors in 
Table 1, the linear regression model is not too 
bad compared to other models; the plots in Fig. 
12 show that the wavelet model does significantly 
improve the prediction accuracy. 

Sigmoid neural networks have also been tested 
on this example; the results are similar to those 
obtained with wavelet networks. 

The nonlinear black-box models perform 
better than the semiphysical model in terms of 
output prediction. This is at the price of much 
greater computational complexity. On the other 
hand, the semiphysical model, though less 
accurate, allows one to perform a physical 
diagnosis of the system faults (Mathis, 1994); in 
contrast, the black-box models give one the 
possibility to implement a finer global alarm of 
the monitoring system (see also Mathis, 1994), 
but the model parameters do not provide any 
physical information for fault diagnosis. 

10.3. Modeling glycemic variations 
This is a medical example illustrating the use 

of fuzzy models. 

10.3.1. Describing the problem. Glycemic va- 
riations depend on several factors that are not 
easily quantifiable and, moreover, may vary with 
time. Food diet, physical activity, stress and 
emotions and proximity of meal have effects that 
doctors know how to assess qualitatively. For a 
healthy person, glycemic regulation is ensured 
via the secretion of insulin by the pancreas. In 
case of organic deficiency, for diabetics, insulin 
must be injected artificially. Deciding the 
amount for injection is very difficult, because 
morphology, future physical activity, time of 
meal, glucide richness of meal, present glucose 
concentration and results of the previous day, 
have to be taken into account. Moreover, 
injected insulin acts with delay, and its efficiency 
reduces as glucose concentration gets higher. 
Lastly, hypoglycemia is almost always followed 
by hyperglycemia. For an optimum glycemic 
control, it would be better to anticipate before 
the glucose level rises, as it occurs for endogenic 
insulin secretion in healthy persons. To sum- 
marize, we have to deal with a nonlinear 
unstable system with time delay. 

Doctors have devised empirical rules allowing 
diabetics to compute themselves the approxim- 
ate insulin level for injection. For diabetics using 
a pump, the insulin injection rate has two parts: 
the basic flow rate, denoted by B,(t), and 
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Table 1. Performance evaluation of the turbine models 

RBS net SSO net BE net Semiphysical Linear 

Init. RMS 0.0743 0.0708 0.0719 
Opt. RMS 0.0729 0.0743 0.0698 0.1136 0.0922 
Init. flops 2.0718 x 10’ 4.3714 x lox 7.5143 x 10’ 
opt. flops 1.5365 x 10’ 1.5365 x 10’ 1.5365 x 10’ 9.8041 x 10x 9.6272 x 104 
Init. time (s) 41.6 251.2 87.2 
Opt. time (s) 2461.8 2383.8 2456.5 2265.0 0.1921 

RBS net, SSO net and BE net are the wavelet network models initialized by RBS, SSO and BE 
procedures respectively. RMS is the root mean square error, and is evaluated on the validation data 
2,. For the network models, Init. RMS corresponds to the initialized model, and Opt. RMS 
corresponds to the model optimized by 10 iterations of the Levenberg-Marquardt procedure. Flops 
is a Matlab measure of computational burden. The computation time is based on programs in the 
Matlab 4.2 language executed on a Sun Spare-2 workstation. 

providing about 50% of daily insulin needs, and 
a variable part, the bolus, denoted by B,(t), 
which is a flash injection to assimilate a recent 
meal. 

Nevertheless, despite doctors experience, it is 
very difficult to manually obtain a more or less 
constant glycemic level, in part because a good 
control should take into account up to six input 
variables, which is far beyond human control 
capability. This motivated us to propose a 
predictive glycemic model as a basis for 
automatic injection control. This model uses as a 
basis the empirical rules of doctors, and takes 
into account the qualitative nature of available 
data. For this proposal, we have several 
‘self-supervision notebooks’, i.e. daily support to 
control the context and the treatment of 
insulin-dependent diabetic patients under pump 
operation. Thus, each day the diabetic writes on 
his or her notebook 

(i) time and actual glycemia; 

(ii) time, importance and quality of the meal; 

(iii) activity; 

(iv) insulin injection. 

1 

(a) 
0.9- 

11 c 

0.6 

0.7 
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Experimental results on this case study are 
now reported. 

10.3.2. The variables of interest and their 
qualitative labels. Diabetologists’ knowledge is 
expressed under the form of ‘rule of thumb’ 
advice. We have used this knowledge to build a 
two-hour-ahead predictive model of glycemic 
variations. This predictive model will be 
subsequently used in a control system. We have 
restricted our model to six inputs (the current 
instant t is omitted for simplicity) as described in 
Table 2. The output is the predicted variation of 
glycemic at time t+2h, DG(t+2) E{PVB, PB, 

PM, Ps, z, NS, NM, NB, NVB}, where P means 
‘positive’, N ‘negative’, S ‘small’, B ‘big’, etc. 
Figure 13 shows membership functions of 
glycemia, where the parameters (g;)fl=, must be 
determined by learning, since their optimal value 
depends on the patient. Membership functions 
have been represented by simple first-order 
splines with free knots. Our method follows the 
following two steps. 

1. Start with an initial guess of the model, based 
on available (qualitative) prior knowledge. 

2. Tune this model to the particular patient 

1 

(b) I 

0.11 I , 
0 50 100 150 200 250 300 350 400 

Fig. 12. Comparison on the validation data Z, of the predictions by the linear regression model (a) and by the wavelet network 
initialized by the BE procedure (b). The solid lines represent the true measurements and the dashed lines the outputs of the 

models. 
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Table 2. Fuzzy input variables 

Item Symbol Fuzzy values 

Glycemia Gl 
very LOW Low Normal High Very High 

(VL) (L) (N) (HI (VH) 

Basis insulin 
injection rate 

Ba Low, Normal, High 

Flash insulin 
injection rate 

Bo Low, Normal, High 

Elapsed time 
since previous meal 

Dr Far Before, Near, Just After, Far 

Diet Nr Fiber, Normal, Glucidic 

Expected 
future activity 

AC Low, Normal, High 

under consideration, by performing learning 
or optimization from available data. 

10.3.3. Expressing prior knowledge. Com- 
bining all possible qualitative values for the 
different inputs yields 1620 different cases, 
corresponding to the same amount of candidate 
fuzzy rules. In fact, only 64 rules were 
considered for our prior model, thus reflecting 
the actual domain for the input variables where 
meaningful knowledge exists. Examples of such 
rules are 

if (GL(t) is VL) and (Nr(t) is N) then 

DG(t+2) is PB 

if (GL(t) is L) and (Ba(t) is L) then 

DG(t+2) is NS 

Figure 14 shows predicted glycemia at t + 6 from 
glycemia at time t, with S = 2 h, before learning, 
i.e. with use only of the prior model. The solid 
line shows the actual glycemia and the dashed 
line the predicted one. The doctors’ rules are 
quite efficient in predicting the effect of insulin 
injections. Still, some spikes occur in the 
prediction error. The prediction error has mean 
p = -0.20 and standard deviation g = 0.38. 

10.3.4. Tuning the model for each patient. 
Using data from a patient’s notebook, we 
divided the data file into two parts: one for 
learning and the other for validation (i.e. 
testing). Figure 15 shows predicted glycemia at 
t + 2 from glycemia at time t, after learning, i.e. 

subsequent learning of the gi parameters on data. 
The prediction error has mean I_L = -0.0003 and 
standard deviation g = 0.29. Some improvement 

go 81 82 g3 % 

Fig. 13. Fuzzy partition for glycemia. 

is seen; note that such an improvement is likely 
to be patient-dependent. The errors around time 
steps 700 and 800 are due to catheter changes (as 
marked in the notebook) which usually lead to 
the injection of more insulin than expected. 

10.3.5. Comments and conclusions about this 
example. The following conclusions can be 
drawn from this example. 

Fuzzy rules turned out to be a convenient way 
to express prior knowledge from doctors-in 
part because this prior knowledge is mainly 
qualitative. It is important to notice that this 
fuzzy rule basis was far from being equivalent 
to an exhaustive table describing the input- 
output map, since only a few percent 
(64/1620) of this table was described by the 
rules. This restriction is by itself a useful prior 
information about the range of validity of the 
modeling. 

Subsequent tuning of the prior model was 
performed while preserving the structure of 
the model; i.e., the fuzzy rules were not 
modified-only the gi parameters hidden in 
the splines were adjusted. It would also be 

Fig. 14. Prior model: 2 h ahead prediction (dashed line) 
versus actual (solid line) glycemia. 
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Fig. 15. Model after learning: 2 h ahead prediction (dashed 
line) versus actual (solid line) glycemia. 

possible to use our prior model as initial guess 
but allow other ‘rules’ to be introduced via 
learning; corresponding experiments are under 
progress. 

Another advantage of describing the model 
via fuzzy rules is the possibility to ‘decompile’ 
the model after learning, again in the form of 
fuzzy rules, for return to the user (doctor or 
patient). Returning a mathematical model 
would be of little use for the average user, 
having no training in mathematics. 

11. SUMMARY AND RECOMMENDATIONS 

System identification cannot be fully formal- 
ized and automated. A user must always blend 
his or her experience and commonsense with 
established theory and methodology. In this 
section we take the position of a user with 
relevant software support available. Assume that 
we have collected input-output data from a 
system and shall estimate a model based on 
them. What are the things to consider for a 
successful result? 

11.1. Some general concerns 

Look at the data. This is the first and obvious 
step. It is often very revealing. Nonlinear effects 
can often be detected by visual inspection: are 
responses similar at different levels and in 
different directions? What time constants can be 
seen. and so on? 

Try simple things first. A good engineering 
principle is to try simple things first. In the 
identification context, ‘simple’ may mean both 
the size and the computational complexity of 
models. In practice, it certainly means that one 
should try linear models first, to see if they can 
solve the problem, and if not, get some insight 

into their shortcomings. From a theoretical 
estimation point of view, simplicity refers 
primarily to the number of estimated para- 
meters. By searching from simpler to more 
complex models until a valid one is found, 
typically a good trade-off between bias and 
variance can be achieved. 

Look into the physics. Physical insights may 
suggest to (linearly or nonlinearly) transform 
raw measurements into new regressors. Try to 
use such semiphysical regressors (cf. Section 3.3) 
first in linear black-box structures. Only if this 
gives unsatisfactory results, or if physical insight 
is completely lacking, it is time to move to the 
nonlinear black-box structures described in this 
paper. Even for these models, it makes sense to 
use semiphysical regressors. 

The bias-variance trade-ofi The bias-variance 
trade-off (43) tells us that one should not 
excessively increase the number of estimated 
parameters (i.e. the number of basis functions in 
the model). The ultimate improvement of the 
model quality could be obtained by suitably 
choosing basis functions that would require 
physical knowledge and lead to physical models. 

Validation and estimation data. The best way to 
evaluate an identified model is to test it on fresh 
data (that were not used for model estimation). 
We have pointed to this use of validation (or 
‘generalization’) data for determining the model 
complexity-the Bias-Variance trade-off-both in 
terms of model structure complexity, size of 
regularization parameter and when to stop the 
iterations. Checking out a potential model on 
validation data has a clear pragmatic appeal: can 
it reproduce previously unseen data in a 
satisfactory manner? Then it must be of some 
use. 

The notion of eficient number of parameters. 
The variance contribution to the model output 
error in (40) is, principally, proportional to the 
number of parameters used in the model 
structure, if they have been estimated by 
minimization of (34). This means that a 
parameter that is not so important for the model 
fit will still contribute as much as an important 
parameter to the variance error. The intuitive 
explanation is that the unimportant parameter 
will be estimated very inaccurately, so, even 
though its influence is small on the fit, its large 
errors will still be damaging. 

It is thus tempting to have estimation schemes 
that reward the ‘important parameters’. There 
are a number of possibilities. Regularization, 
which was reviewed in Section 6.4, is the classical 
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method. A variant of regularization is to stop the 
iterations in the minimization of (34) before the 
true minimum has been found, as described in 
Section 7.4. A third way of focusing on 
important parameters is to first estimate ‘many’ 
and then discard those that are ‘small’, and then 
possibly re-estimate the values of the remaining 
ones. This is what we called shrinking and basis 
function selection in Section 8. The remaining 
number of parameters will essentially determine 
the model variance error. 

11.2. Structural issues to consider 
11.2.1. Regressor selection. A rational ques- 

tion to ask would be as follows. Given that I am 
prepared to use d regressors, how should I 
distribute these over the five possible regressor 
choices listed in Section 3? There is no easy and 
quantitative answer to this question, but we may 
point to the following general aspects. 

A first choice to consider consists in trying 
static models, i.e. taking only u(t) as the 
regressor. 

Including u(t - k) only, k = 1,2, . . . , requires 
that the whole dynamic response time is 
covered by past inputs. That is, if the 
maximum response time to any change in the 
input is Y and the sampling time is T then the 
number of regressors should be Y/T. This 
could be a large number. On the other hand, 
models based on a finite number of past inputs 
cannot be unstable in simulation, which is 
often an advantage. A variant of this approach 
is to form other regressors from u’, for 
example by Laguerre filtering (see e.g. 
Wahlberg, 1991). This retains the advantages 
of the FIR approach, at the same time as 
making it possible to use fewer regressors. It 
does not seem to have been discussed in the 
context of nonlinear black boxes yet. 

Adding y(t - k) to the list of regressors makes 
it possible to cover slow responses with fewer 
regressors. This is quite important for 
nonlinear models, since trying to achieve the 
same objective with more delayed inputs is 
much more prohibitive than for linear models. 
A disadvantage is that past outputs bring in 
past disturbances into the model. The model is 
thus given an additional task to also sort out 
noise properties. A model based on past 
outputs may also be unstable in simulation 
from input only. This is caused by the fact that 
the past measured outputs are then replaced 
by past model outputs. 

Bringing in past predicted or simulated 
outputs y^ (t - k 1 19) or past values from other 

nodes in the network that may be interpreted 
as state variables may be quite useful. It 
typically increases the model flexibility, but 
also leads to non-trivial difficulties, related to 
the recurrent nature of the resulting network. 
See Section 4.3. Two problems must be 
handled. 

(i) 

(ii) 

It may lead to instability of the network, 
and, since it is a nonlinear model, this 
problem is not easy to monitor. 
The regressors that are fed back depend 
on 8. In order to do the minimization 
iterations in the true gradient direction, 
this dependence must be taken into 
account, which is not straightforward. If 
the dependence is neglected, convergence 
to local minima of the criterion function 
cannot be guaranteed. 

The balance of this discussion is probably that 
the NARX regressors (y(t - k), u(t - k)) should 
be the first to test. 

11.2.2. Choice of basis functions. Now that the 
regression vector cp has been decided upon, the 
question is which function expansion (19) to use. 
We thus return to the choices listed in Section 
4.2. This is a more difficult decision, and the 
collected experience on this is not yet substan- 
tial. All of the model structures described are 
capable of approximating any reasonable func- 
tion. The question is to pick one that ‘suits the 
application’, in the sense that only few terms will 
be needed. 

Curse of dimensionality. The dimension of the 
regression vector is d, so the function to be 
approximated by (19) has aB” as its domain. Even 
for moderate d, the observations cp are by 
necessity very sparse in any bounded region of 
R” of practical interest. For example, it takes 
N = 10” observations to fill up the unit cube in 
[WI’, even with a coarse component-wise grid of 
granularity 0.1. This consideration is important 
for the choice between basis functions obtained 
by radial constructions and ridge constructions. 
See below. 

Radial constructions. In view of the curse of 
dimensionality, local basis functions are a prime 
choice when the dimension of the regression 
vector is rather low. For d 5 3, the wavelet basis 
function expansion would be an excellent choice, 
since the wavelet coefficients can be estimated 
very efficiently. For somewhat larger values of d, 
it is natural to try out wavelet networks and 
radial basis networks. For large values of d, 
model structures based on local basis functions 
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will simply not support any model statements 
outside the areas where observations have been 
made (which is not unreasonable). 

Multiresolution aspects. A very useful feature of 
the wavelet models is that the scale parameters 
can be chosen very differently. Certain areas in 
the data space can be covered by basis functions 
with large support, while others can be covered 
with much finer resolution. Also one and the 
same region may be covered by both types, to 
pick up both fine details and courser trends. This 
could be a useful way to deal with the lack of 
data in certain regions. One may note, though, 
that the curse of dimensionality not only relates 
to the possible lack of supporting data. Any 
prior seed of basis functions to be screened with 
the help of data will also be huge in high 
dimensions, and that may be a major obstacle. A 
solution has been proposed in Section 8.2: scan 
the available data and pick only those basis 
functions that contain enough data points in 
their supports. 

Ridge constructions. Ridge constructions, like 
those used in sigmoidal neural networks and the 
hinging hyperplanes networks, deal with the 
curse of dimensionality by extrapolation. This 
means that the functions identify certain 
directions in (y, cp) space where ‘not much 
happens’. In other words, these are projection 
directions that would show clear data patterns in 
the projected picture. These directions are 
chosen as the global ones. The approach thus has 
clear connections with projection pursuit 
(Friedman and Stuetzel, 1981). The advantage is 
that higher regression-vector dimensions can be 
handled, by extrapolation into unsupported data 
regions. Whether or not this is reasonable, 
depends of course on the application. Experi- 
ence indicates that the approach is often 
successful. 

Basis functions by prior verbal information. 
Building up the basis functions from fuzzy logic 
and fuzzy rules is another way of dealing with 
the curse of dimensionality. The extrapolation 
into unsupported data regions is then done based 
on the prior knowledge (right or wrong) about 
the system’s behavior. In the regions where the 
model is supported by data, it is modified 
according to the information in the observations. 
A perhaps even more important aspect of the 
choice of basis functions via fuzzy sets is the 
specification of the domain of interest, i.e. the 
areas where input data are expected. This seems 
to be a quite appealing way to deal with partial 
data information. 

12. CONCLUSIONS 

In the toolbox for system identification 
techniques one should have black-box models 
for nonlinear dynamical systems available. It is 
true that it is preferrable to use physical insight 
to build up the nonlinear effects in a model, 
since this typically can be done using fewer 
parameters. However, such insight is not always 
available, and if linear approximative models are 
not good enough then there is no other choice 
than to turn to black-box structures. 

This topic is not at all new. The ‘classical’ 
literature on the subject seems to have 
concentrated on global basis function expan- 
sions, such as Volterra expansions. These have 
apparently had limited success. The topic was 
really revived by the onslaught of neural 
network applications. 

In this paper we have treated most of the 
possibilities for black-box nonlinear dynamical 
models in a common framework. We have 
pointed to the similarities in the different 
approaches, and we have tried to pinpoint what 
the real choices are. The bottom line is that 
there is a choice of basis functions. Each of the 
basis functions also carry some parameters to let 
them adjust to the observed data. These 
parameters typically correspond to scale and 
location of the function support. Scale and 
location, as well as function coordinates, can 
either be estimated by one joint minimization 
process or by a first, separate, step to fix location 
and scale. 

The perspective of this paper has been the 
user%. We have not given details about 
approximation theory or properties of the 
function expansions. We have focused on the 
choices that the user has to make for a successful 
application. More mathematical investigations 
can be found in the companion paper by 
Juditsky et al. (1995). 
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