

Telemanipulation and Telestration of the Steady Hand Eye Robot

Robert Eisinger Group 7

Mentor: Marcin Balicki 3/13/2012

Performance of Robotic Augmentation in Microsurgery – Scale Motions

- Rajesh Kumar¹, Tushar M. Goradia³, Aaron C. Barnes², Patrick Jensen⁵, Lois L. Whitcomb², Dan Stoianovici^{2,4}, Ludwig M. Auer⁶, Russell H. Taylor¹
- 1999

Proceedings of the 2nd Inter- national Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI),

¹ Department of Computer Science

² Department of Mechanical Engineering

³ Department of Neurosurgery

⁴ Department of Urology

⁵ Microsurgery Advance Design Laboratory Johns Hopkins University, Baltimore, Maryland, USA

⁶ Institute of Applied Sciences in Medicine

Project Overview

Telemanipulation

Project Overview Cont.

Telestration

Paper Overview

Performance of Robotic Augmentation in Microsurgery

- Goal: to evaluate microsurgical cooperative assistants in their ability to augment fine surgical motions
- How: experiments performed using the Steady Hand Robot and the LARS Robot
- <u>Evaluation</u>: results compared with traditional microsurgery technique

Background

Anastamosis

- Joining two blood vessels as a bypass
- A needle guides a suture material in and out of the vessel wall as the ends of the vessels are conjoined
- Requires fine control

Steady Hand Robot

- Fine control, 5 DOF, force sensor
- Tremor cancellation
- Positional accuracy on the order of 10s of microns

LARS

- Fine control, 7 DOF, force sensor
- Positional accuracy on the order of 100s of microns

Fraser et. al.

Introduction

- Cooperative control system
 - Integrates safety and information into the procedure without taking away control from the human surgeon
 - Allows the surgeon's superior intelligence/experience to be used with greater precision
- But how can we evaluate the usefulness?

Experimental Setup

- Sandwich of two metallic plates
- Insulator in between
- Microsurgical needle
- Holes on the top surface (250, 200, and 150 microns)
- Lower sheet is success, top sheet is error
- Both surfaces connected to Robot; closed circuit is recorded

Three Versions

- Three different experiments for both robots:
- 1. <u>Unassisted Series</u> the surgeon used only the conventional techniques to perform the pick-and-place operations
- Hand Held Series the needle holder was attached rigidly to the force sensor at the end-effector of the robot. The robot complied to user applied forces
- 3. <u>Autonomous Series</u> the robot is registered to the plates (using 8 corner holes) and performs the task autonomously.

Results

Success Rate

Size	of Holes	Unassisted	LARS Robot		Steady Hand Robot	
			Hand-held	Autonomous	Hand-held	Autonomous
	250um	48.8%	56.0%	53.0%	77.8%	98.4%
1	200um	46.3%	50.8%	50.0%	76.7%	97.7%
	150um	43.0%	46.0%	48.0%	79.0%	96.5%

Errors in a fixed time

	Unassisted	LARS Robot		Steady Hand Robot	
Size of Holes		Hand-held	Autonomous	Hand-held	Autonomous
250um	120.5	65.0	58.0	29.6	5.0
200um	110.0	76.8	62.0	27.0	7.0
150um	107.0	66.8	65.0	25.0	11.0

Conclusions

- Robots can extend human capabilities
- Steady hand eye robot significantly increases the accuracy without affecting operator perception (users reported equivalent ease of use)

Applying to our Project...

- Adapt ideas for telemanipulation validation
 - Spatial experiment
 - Experiment 1: Unassisted
 - Experiment 2: Eye Robot hand held
 - Experiment 3: Omni
 - Question: using scaling, does Experiment 3 give better accuracy rates than Experiment
 2?

Thoughts

Positive

- Simple and clear result
- Experimental set up in the form of "correct" or "incorrect" constitutes easy analysis
- Clear difference between LARS and SHR

Room for improvement

- More details about the experiment (e.g. how many tries did each subject have?)
- Illustration of the metallic plate sandwich
- Missing the purpose and details of the autonomous series
- "Several other factors such as mistakes made in positioning the needle, spacing between sutures, etc..."

Future Work

- Further experiments to evaluate parameters that may have had an effect on this experiment
 - Ex. Training
- Recruit surgeons to perform the same experiment, rather than 6 grad students

Questions?

