

AWARE@ICU

Colin Lea

Automated Workflow and Activity Recognition CIS2 Checkpoint Presentation #10

overview

pipeline

Raw Signal

Derived Signals

Action,

milestones

Milestone	Mid Feb	End Feb	Early March	Mid March	End March	Early April	Mid April	End April	Early May
Recorder									
Data									
S-Gestures									
S-Locations									
S-Skeleton									
S-Scene									
A-Windows									
A-Recog									
Docs									

Today

Reco	rder			Experimentation				
Task Difficulty		Notes		Task	Difficulty	Notes		
General Purpose Recorder	Easy			Get IRB Approval	Easy	Waiting		
General i dipose necordei	Lasy			Record preliminary data	Easy	Non-		
Face removal	Medium			necora premimary data		publishable		
				Ensure de-identification	Easy			
Blackout stretcher	Easy		٠	Hand annotate activities	Easy	4/4/2012		
Anonymization	Medium			Additional recording	Easy			
Derive	d Data			Activity recognition				
Task	Difficulty	Notes		Task	Difficulty	Notes		
Location tracker	Medium			Gesture recognition	Hard			
Face direction	Easy	CSIRO		- Costai e recognición	Tidi d			
tracker	2007	Software		Retrospective analysis	Hard			
Staff body pose estimation	Hard	In Process		Patient Tracking	Medium			
Patient tracker	Medium			Multi-camera models	Medium			
Equipment Identification	Hard			Evaluation	Easy	5		

data collection

• 3 hours of depth/RGB/skeleton footage

• 2 Kinects

Pediatric ICU

ICU depth video

Head view Foot view

kinect skeletons

Camera 1:

Camera 2:

(+) = location :: skeleton = joints positions :: green = correct :: red = wrong

kinect skeletons

Camera 1:

Camera 2:

(+) = location :: skeleton = joints positions :: green = correct :: red = wrong

Can we do better?

activity pipeline

skeletal tracking

segmentation (step 1)

Depth Image

Background Subtraction

segmentation (step 2)

Problem: people are shades of gray

Iterative solutions too slow

Solution:

- Method 1: Cluster
- Method 2: Gradient/edge removal

Background Subtraction

(Method 2) Gradient-based

segmentation

tracking

skeletal tracking (in progress)

Find extremities (ie. arms, head)

- Floyd-Warshall Algorithm (like Dijkstra's)
- Think flow along surface!

Parts-based model

- All people have similar structure
- Initialize with head + general direction (SVD)

Flow from centroid

gesture models

Action Recognition

Staff gestures

- Determine sub-actions
 - i.e. Inserting tube
 - Giving medicine

Algorithm

- 1. Calculate PCA per-joint, per-class
 - 1 [x,,y,z] basis * 13 joints * n classes
- 2. Correlate input w/ each known gesture's PCA basis
- 3. Find similarity between test and training (per joint, per class)
- 4. Vote (Optional: Add prior)

dimensionality reduction

[Bigdelou '12]

experiment

10 gestures5 trials/gesture2 people

Wave

Circle (counter-clockwise)

Circle (clockwise)

Push forward

Push left

Push right

Swoosh right

Reach up

Duck

Kick

5 samples w/ leave one out

Avg: 94.5% [0.95, 0.95, 0.95, 0.925, 0.95]

Train on one person, test on another

Train A, Test B: **44**% [0.425, 0.475, 0.425, 0.4, 0.475] Train B, Test A: **61**% [0.575, 0.5, 0.7, 0.65, 0.625]

One-shot learning

Avg: 77% [0.8, 0.75, 0.75, 0.825, 0.725]

Sliding window

Avg: 95.5% [0.95, 0.95, 0.975, 0.95, 0.95]

Sequences

other directions

Action Recognition

Time-series graphical models

- Switching Linear Dynamical System (code available)
- CRFs

Multiple Instance Learning

Split into bags -> Iterative SVM

Questions?

dimensionality reduction

dimensionality reduction

All gesture poses

Per joint, per class PCA component