CIS Il: Paper Presentation Report
By Zachary Zhou
Group 16
Project: CISST to MATLAB Interface

Paper Source:
Vincent Chu, Ghassan Hamarneh “MATLAB-ITK Interface for Medical Image Filtering, Segmentation,

and Registration”. <www.cs.sfu.ca/~hamarneh/ecopy/medical_showcase2005a.pdf=>

Project Summary:

The cisst package is a collection of libraries designed to ease the development of computer assisted
intervention systems. Currently the cisst libraries are available only in the C/C++ programming language,
requiring anyone wishing to use the cisst libraries to be proficient in the C language to some degree.
However, there are many potential applications for the cisst library which doesn't require a deep
understanding of the C language. As a result, it is profitable to wrap the cisst package in a more easily
understood language.

Recently, MATLAB has become a very popular language for scientific researchers and biomedical
engineers. Intrinsically, it much easier to learn and understand MATLAB than C. There is no need to use
clearly defined types in MATLAB, no need for separate header/source files, no need to create makefiles
and compile, etc.. In addition, MATLAB offers a command terminal which allows the user to test code
without having to stop and compile.

In addition, many methods of analyzing data collected by the cisst librarys have been coded in
MATLAB. A MATLAB wrapper for the cisst libraries will allow for the user to direcly analyze collected
data instead of having to send it to MATLAB via File 10.

As a result, MATLAB is one of the best languages to wrap the cisst libraries in.

Background

MATLAB, short for MATrix LABoratory, is an interpretative language and environment which is
optimized for matrix manipulation. As a result, MATLAB is commonly used for matrix computations,
numerical analysis, and graphing.

The ITX (Insight ToolKit) library, which is used in this paper is a open-source toolkit written in the C++
environment. The toolkit contains various filtering, segmentation and registration algorithms designed
for medical image analysis. ITX provides various algorithms and methods which are not commonly
available in MATLAB and utilizes the superior speeds of compiled C methods.

As an interpretative language, MATLAB allows for C libraries to be directly loaded into the MATLAB
workspace. There are two ways in which this can be accomplished. Firstly, one may recompile C source
files/libraries into MEX files which may be called in a similar manner as standard MATLAB function. In
addition, C library files can be loaded directly onto the MATLAB workspace and functions on the library
can be called by MATLAB indirectly through the calllibaray() method.

Paper Purpose and Relevance

The purpose of this paper was to present the design and usage of a MATLAB wrapper for the ITK
library. This paper is of strong relevance to my chosen project as it documents the creation of a
MATLAB wrapper for a C library. Similarly, I am trying to create a MATLAB wrapper for the cisst
libraries which is also coded in C. The paper covers both and overview of their design and
implementation of their wrapper. In addition, it includes documentation and examples of usage of the
MATLAB-ITK wrapper in the MATLAB workspace. From this paper, | may be able to drawn some
design ideas for the implementation of the cisst-MATLAB wrapper.

Design, Implementation, and Results

The following presents an overview of the design of the MATLAB-ITK wrapper, its implementation,
and results as they are presented in the paper.

Objective:
The stated objective of this paper is design a wrapper which will allow a greater number of researchers

access to the ITK libraries. In addition, allow for data from ITK to be reduced on MATLAB without file
10. This is expected to result in a speed up several orders in magnitude.

MATLAB Setup for Building MEX:

| matitk{ filtername’, [parameters].[input volume A, [input volume B]); |

»

-

matitk.cpp

Traslate wnapewmnlienes, soeds, cir
int: Kot ble bormat,
Frrlusdon asic reom chockmge

—_—

itkecora.cpp

Tzgrd an the filler ke, dispa ch
shu call fnns e cr the 3 fles

itkfiltercore.cpp
Tlandles iliening rethads.
Ty vzuzlly aze oy s
i valume as inpuk, and
PLaLEe e dukge sl
T

itksegmentationcore.cpp
Tlaad s repistratinn o=
Ttiew ustally take canle ong inage
as A menwiTe Ty, aTE annt ey
e i Lae] e, 1 cosdaes e
image wrhare st

ithkragistrationcore.cpp

Mand™z sepracatalinn refnds. They
usbally tebe anle i inage visLime s=
resin irpk aneher s e me feafes
bepal e oo el pobids, Loey
nzally peecine e drns e saleme

uedpul

Figure 1. MATITK Execution Flowchurt,

Utilizes CMake to compile standard ITK files into MEX files. Automatically generates mexopt.bat file
which contains header and library paths for ITK files.

Architecture:

Main wrapper file is matitk.cpp, which contains the mexfunction. As a result, matitk() is the only
function which will be called from the MATLAB console. Matitk will then parce the input string values
and pass results to itkcore.cpp, which performs further reduction of input values.

Itkcore will then invoke one of 3 procedures depending on command invoked.

Filtering

wold SogmenT st ansedeslchctl vetontaurlave L et {14
conat char= PARANL]={"propsgstionEcaling™, AT EEm meeTe pARTAmetaress i
const chars FGOESTVALUEL]={==,"1.2~,"1.9", "G, 0F", "800"};
<onsT int afaram = sizecf (FARA . eizect [=PAREN]
FaranaterCeoralner parsalrerater (FARAN FUGOESTVALUE .nParssd |
if CemptyIsporiFilser [IFFUORTFILTERZ] J{menErrMagTesi", . '.l.'
BoXFTint{"\0This method Tequires Tue LBage YolumsE, W
SEFLASISEEPSFA AN A Bagin Core Filver Codad sl o080 .l'." .I'.".".I'.I'." L
AouEle Propapstloaicaling=parssls wnl:-'T (AT Ten R AT D |
Ad.. . wdiced for Trevicy., The Othar 4 pATAR-STeTS Can to accessed im & similar Tashiso
Typedat itk GacdesicActlveContourlovelEet InageFllter<[npatIsageType Dutput IRagaTEpe>. . .
GardasichctivetontourFlitarType: (Pedntar filter = GaodesiclctlvelontourFiltarType: Heull;
filtar->SetPropagaricnicaling] propagationScalisg 1
A0, wdited for brewlty, The othar 4 parssssters are sot in & eimdlar faeldlom ae The line abows,
filter->8et Inpus{ impersFileer [IHPIATFILTERR] -=DetDatpot (1) ;
filtar->SetFesturalnage ! lagortFilter [IMFORTFILTERL] - »Gatdurpas il
filtas->lipdarell;
FF...omitted cods for settizg up end comsecting additicoel filterm ..
ralloztpiner = threabholder—sSatletpet{)-rietPizalCaontaiza={);
SEEFAEFSEFSS SRS AP Ead Case Filtar Coda/ 0 S QS8 ERP P rSErdfrrsss

Sample pseudocode:

First lines defines parameters required by the filter, following lines are relevant code. There is no return
type for filters. They access variables stored in itkcore.cpp which are then passed to MATLAB via
matitk. Filtering code mush start with an input with the letter 'f.

Segmentation:

wokd sapmntationlesdeslcbeviwlionsour LavelSat (1L
const chare PAREN [I={"propagaticafcalizg™, ... /*s0Ee EOTY pATABOTSTEYS}]
const chary FUGGERTVALUEL={"","§,0" 71,0 .=0. 02" =R~}
canft 1nt nFarem = aizeot (PAIAN)Ssizeot (+FERAMG
PATESM FATCORERIBAT PATARITATAEOT (PAIAH , SUSGESTVALUE, aParan) ;
if {emptyImportFiltar [[MFORTFILTERBE) }{mexErTHegTuti™. . . "}}
mexPrintf (“WnThis method requires teo SRags volumas..,.'n"1;
FAAESAEF IR AA S Feagin Core FLItar Coadad S 008 00000 s aidds
daubia j\-'r-:-p-agla-l: orScaling=paraniterator, getiurrentParan (2]
£ ndized for brevisy Taw other 4 perametars caa be accosssd 1o a simdlar fashiom
l:-u'p-e-‘-u" i%kr § Geadiesl chesi wolontour LevelSot TnagaFils #T*]"-FL-I:[!HEGT:.—\-C- CUEPUT IR Ea Ty . .
H\:IHH1I:|-?!- PelentsurFL1TarType: iPointer f1lter = JesdeslcherivlenrourFileer Type i rNewil
1eer-*ZacFropagetionScelingl propagetionScaling 1;
Ff-- odited for bravity. Tha other 4 pATAESTACE ATE B4t 0 & simllar fashion 48 the 1izs sbave.
filver-*Satinpet linparsFilter [FORTFILTERR] -0t Ourgan (31
:'.'.l:-w-vﬁ-ul:-Fulg'_a:r-e-[rw!. impertFilier [INPORTFILTERA] - 0ot Dutput 13 ;
filepr-rilpdatal g
Ff...ozitied code for astting up m=d cconectisg mdditiccal filtesa ..
piralfostaizar = thresholdec-2Getlotpok()->CetFisalicataloes{];
FEAESS RSSO ESE Bl Coan Filtas CodedF O ARSI ENIEESR 0SS

Similar to filtering, first lines define parameters, following lines are relevant code. As in case above,
there is no return type as the method modifies variables stored in itkcore. Segmentation calls must start
with the letter 's'.

Registration:

Procedure for registration is similar to that of filtering and segmentation. Registration calls much begin
with the letter 'r’

Automated Generation of Filtering Script:

Uses perl script, matitkcode.pl to generate ¢ source files that contain auto-generated mex compatible
filter methods. There are potential bugs as it merely follows the pseudocode of the filtering methods
listed above.

Ultilizing the wrapper:

MEX source files and libraries is compiled via CMake into the library matitk.dll. When this library is
placed in MATLAB's working directory, MATLAB will be automatically be able to call the MEX
function of matitk.

MATLAB function calls to ITK library are as follows:
matitk(operationName,[parameters],[inputArrayl],[inputArray2],[seed(s)Array],[Image(s)Spacing)),

Conclusions

As the end result, the authors were able to generate a MEX library with the abilities to call the following
ITK methods.

The wrapper contains full compatibility between C/MATLAB for the ITK library and includes parsing of
basic data types. In addition, the authors perovide a PERL script which can be potentially used to add
additional filtering methods into the library.

Opeode Corresponding filter name

FGA filter(3aussian

FCA filterCurvatured nsio

FCF filterCurvatureFlow

FMMCF filterMinMax{CurvatureFlow

FGM filterGradientMagnitude

FEME filterGradientMagnitude WithSmoothing
Fi5M filterSigmoid Nonlinear Mapping

FRD filterDilate

FBE filterErode

FIDM filter DanielssonldstanceMaplmageFilter
FDOMWV filter DanielsscnDistanceMaplmageFilterGet VoronoiMap
FBL filterBilateral

FBT BinaryThresholdImageFilter

FHB BinomialBlurlmageFilter

FI DerivativelmageFilter

FDC: DhscretelaaussianlmageFilter

FF FliplmageFilver

FAD CrradientAnisotropicDiffusionlmageFilter
FEMRG GradientMagnitudeRecursiveCaussianlmageFilter
FL5 LaplacianRecursivelzaussianImageFilter
FMEANF MeanImageFilter

FMEDIANF | MedianlmageFilter

200 segmentationConfidenceConnected

=IC segmentationlsolated{Connected

SNC segmentationNeighbourhoodConnected
0T segmentationConnected Threshold

5FM segmentationFastMarch

20T segmentation{tsu Threshold

SLAC segmentation{zeodesic ActiveContour LevelSet
sLLS segmentationLaplacianLevelSetLevelzet
RTFSH register ThinPlateSpline

RD register Demaon

Table 1. MATITE wmilable opeodes and the corresponding opnames.

Personal Assessment

| believe that this paper provides a good example of how to wrap an existing C library to MATLAB. It
provides details how to overcome the single entry point weakness of MEX files. In addition, the paper
includes some analysis of why they chose to filter all function calls through one method instead of
adding multiple MEX functions (one per ITK method). Includes a way to add new filtering methods into
MATITK library.

However, | believe there are several weaknesses to this paper. Primarily, one of the stated goals is to
reduce run time of MATLAB analysis by skipping file 10. The authors claim that utilizing the wrapper
will result in orders of magnitude speed-up. However, calling C functions from MATLAB are inherently
slower than calling them from a compiled program. The authors do not even attempt to analysis
potential speed-ups gained via the wrapper.

In addition, | feel that their use of the one MEX function results in very awkward function calls in
MATLAB. The result of their design is a lot of String manipulation. Also, the function call itself seems
very bulky on the MATLAB side and requires careful analysis in order to even call a simple method from
the ITK library. | believe this somewhat mitigates the gain in simplicity going from C to MATLAB.

| believe that the PERL script is a weakness. Automatic generation of code is useful, but because it is
simply a code generator, there is potentially many errors that can occur when generating the code. The
generator seems inflexible and prone to failure.

Also, I will not be able to implement this design for the cisst libraries. One big difference between the
cisst libraries and the ITK library is that the cisst library utilizes object oriented design. As a result, it it
fairly unlikely that a successful wrapper can be created with the single method of entry necessitated by
the MEX architecture.

However, on the whole this paper was very relevant to cisst-MATLAB interface project. Both involve a
wrapper for a C library in MATLAB. In addition, the stated goals of both wrappers are virtually the
same. Even though I will not be able to use much of the design in my project, reading and understanding
the design choices made by the authors was really interesting.

