
CIS II: Paper Presentation Report
By Zachary Zhou

Group 16

Project: CISST to MATLAB Interface

Paper Source:

Vincent Chu, Ghassan Hamarneh “MATLAB-ITK Interface for Medical Image Filtering, Segmentation,

and Registration”. <www.cs.sfu.ca/~hamarneh/ecopy/medical_showcase2005a.pdf>

Project Summary:

The cisst package is a collection of libraries designed to ease the development of computer assisted

intervention systems. Currently the cisst libraries are available only in the C/C++ programming language,

requiring anyone wishing to use the cisst libraries to be proficient in the C language to some degree.

However, there are many potential applications for the cisst library which doesn't require a deep

understanding of the C language. As a result, it is profitable to wrap the cisst package in a more easily

understood language.

Recently, MATLAB has become a very popular language for scientific researchers and biomedical

engineers. Intrinsically, it much easier to learn and understand MATLAB than C. There is no need to use

clearly defined types in MATLAB, no need for separate header/source files, no need to create makefiles

and compile, etc.. In addition, MATLAB offers a command terminal which allows the user to test code

without having to stop and compile.

In addition, many methods of analyzing data collected by the cisst librarys have been coded in

MATLAB. A MATLAB wrapper for the cisst libraries will allow for the user to direcly analyze collected

data instead of having to send it to MATLAB via File IO.

As a result, MATLAB is one of the best languages to wrap the cisst libraries in.

Background

MATLAB, short for MATrix LABoratory, is an interpretative language and environment which is

optimized for matrix manipulation. As a result, MATLAB is commonly used for matrix computations,

numerical analysis, and graphing.

The ITX (Insight ToolKit) library, which is used in this paper is a open-source toolkit written in the C++

environment. The toolkit contains various filtering, segmentation and registration algorithms designed

for medical image analysis. ITX provides various algorithms and methods which are not commonly

available in MATLAB and utilizes the superior speeds of compiled C methods.

As an interpretative language, MATLAB allows for C libraries to be directly loaded into the MATLAB

workspace. There are two ways in which this can be accomplished. Firstly, one may recompile C source

files/libraries into MEX files which may be called in a similar manner as standard MATLAB function. In

addition, C library files can be loaded directly onto the MATLAB workspace and functions on the library

can be called by MATLAB indirectly through the calllibaray() method.

Paper Purpose and Relevance

The purpose of this paper was to present the design and usage of a MATLAB wrapper for the ITK

library. This paper is of strong relevance to my chosen project as it documents the creation of a

MATLAB wrapper for a C library. Similarly, I am trying to create a MATLAB wrapper for the cisst

libraries which is also coded in C. The paper covers both and overview of their design and

implementation of their wrapper. In addition, it includes documentation and examples of usage of the

MATLAB-ITK wrapper in the MATLAB workspace. From this paper, I may be able to drawn some

design ideas for the implementation of the cisst-MATLAB wrapper.

Design, Implementation, and Results

The following presents an overview of the design of the MATLAB-ITK wrapper, its implementation,

and results as they are presented in the paper.

Objective:

The stated objective of this paper is design a wrapper which will allow a greater number of researchers

access to the ITK libraries. In addition, allow for data from ITK to be reduced on MATLAB without file

IO. This is expected to result in a speed up several orders in magnitude.

MATLAB Setup for Building MEX:

Utilizes CMake to compile standard ITK files into MEX files. Automatically generates mexopt.bat file

which contains header and library paths for ITK files.

Architecture:

Main wrapper file is matitk.cpp, which contains the mexfunction. As a result, matitk() is the only

function which will be called from the MATLAB console. Matitk will then parce the input string values

and pass results to itkcore.cpp, which performs further reduction of input values.

Itkcore will then invoke one of 3 procedures depending on command invoked.

Filtering

Sample pseudocode:

First lines defines parameters required by the filter, following lines are relevant code. There is no return

type for filters. They access variables stored in itkcore.cpp which are then passed to MATLAB via

matitk. Filtering code mush start with an input with the letter 'f'.

Segmentation:

Similar to filtering, first lines define parameters, following lines are relevant code. As in case above,

there is no return type as the method modifies variables stored in itkcore. Segmentation calls must start

with the letter 's'.

Registration:

Procedure for registration is similar to that of filtering and segmentation. Registration calls much begin

with the letter 'r'.

Automated Generation of Filtering Script:

Uses perl script, matitkcode.pl to generate c source files that contain auto-generated mex compatible

filter methods. There are potential bugs as it merely follows the pseudocode of the filtering methods

listed above.

Ultilizing the wrapper:

MEX source files and libraries is compiled via CMake into the library matitk.dll. When this library is

placed in MATLAB's working directory, MATLAB will be automatically be able to call the MEX

function of matitk.

MATLAB function calls to ITK library are as follows:

matitk(operationName,[parameters],[inputArray1],[inputArray2],[seed(s)Array],[Image(s)Spacing]);

Conclusions

As the end result, the authors were able to generate a MEX library with the abilities to call the following

ITK methods.

The wrapper contains full compatibility between C/MATLAB for the ITK library and includes parsing of

basic data types. In addition, the authors perovide a PERL script which can be potentially used to add

additional filtering methods into the library.

Personal Assessment

I believe that this paper provides a good example of how to wrap an existing C library to MATLAB. It

provides details how to overcome the single entry point weakness of MEX files. In addition, the paper

includes some analysis of why they chose to filter all function calls through one method instead of

adding multiple MEX functions (one per ITK method). Includes a way to add new filtering methods into

MATITK library.

However, I believe there are several weaknesses to this paper. Primarily, one of the stated goals is to

reduce run time of MATLAB analysis by skipping file IO. The authors claim that utilizing the wrapper

will result in orders of magnitude speed-up. However, calling C functions from MATLAB are inherently

slower than calling them from a compiled program. The authors do not even attempt to analysis

potential speed-ups gained via the wrapper.

In addition, I feel that their use of the one MEX function results in very awkward function calls in

MATLAB. The result of their design is a lot of String manipulation. Also, the function call itself seems

very bulky on the MATLAB side and requires careful analysis in order to even call a simple method from

the ITK library. I believe this somewhat mitigates the gain in simplicity going from C to MATLAB.

I believe that the PERL script is a weakness. Automatic generation of code is useful, but because it is

simply a code generator, there is potentially many errors that can occur when generating the code. The

generator seems inflexible and prone to failure.

Also, I will not be able to implement this design for the cisst libraries. One big difference between the

cisst libraries and the ITK library is that the cisst library utilizes object oriented design. As a result, it it

fairly unlikely that a successful wrapper can be created with the single method of entry necessitated by

the MEX architecture.

However, on the whole this paper was very relevant to cisst-MATLAB interface project. Both involve a

wrapper for a C library in MATLAB. In addition, the stated goals of both wrappers are virtually the

same. Even though I will not be able to use much of the design in my project, reading and understanding

the design choices made by the authors was really interesting.

