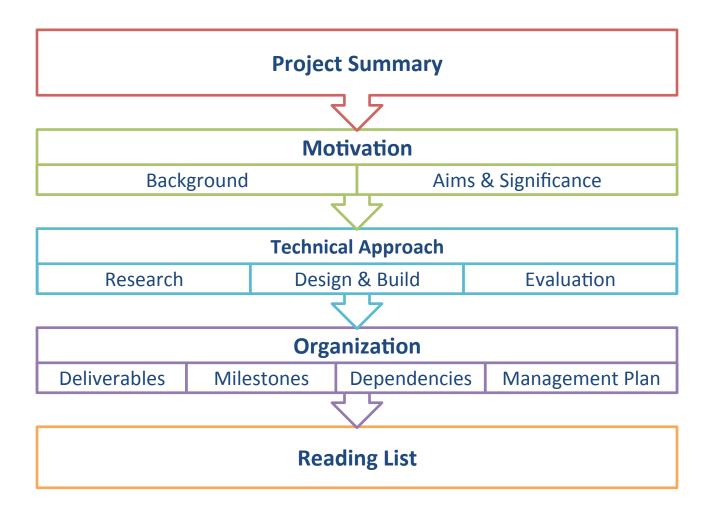


Prototype of a Microsurgical Tool Tracker


Team 5

Students: Yejin Kim, Sue Kulason

Mentors: Russell Taylor, Marcin Balicki, Balazs Vagvolgyi

Table of Contents

Project Summary

- Problem: A need for tool tracker in eye surgery
 - Assess surgical performance
 - Ensure proper protocol
- Project Goal: Micro-Surgical Tool Tracker
 - Build a prototype of a goggle
 - Provide positional feedback

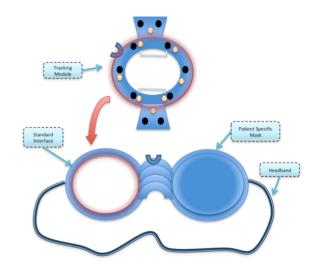
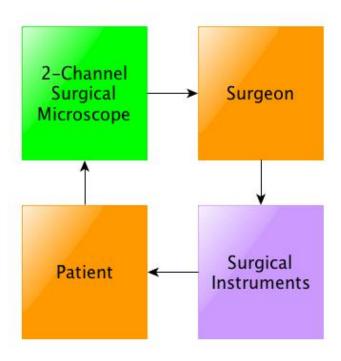


Figure 1. Idea proposed by Marcin Balicki

Project Summary


Motivation

Technical Approach

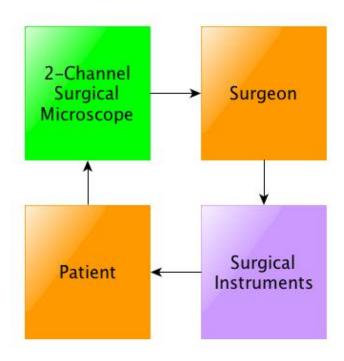
Organization

Standard Ophthalmic Surgery

Based on schematics from [Pitcher et al]

Disadvantages Not very precise, accurate, or stable Hand tremor Narrow field of view Poor decision making/judgment Poor interpretation of qualitative data Lack of information for OR staff

Project Summary


Motivation

Technical Approach

Organization

Standard Ophthalmic Surgery

Based on schematics from [Pitcher et al]

Disadvantages

Not very precise, accurate, or stable

Hand tremor

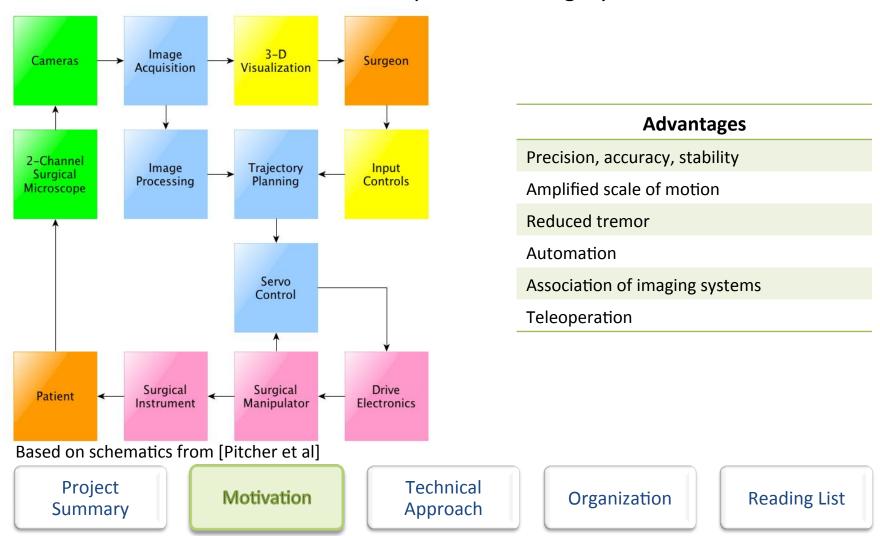
Narrow field of view

Poor decision making/judgment

Poor interpretation of qualitative data

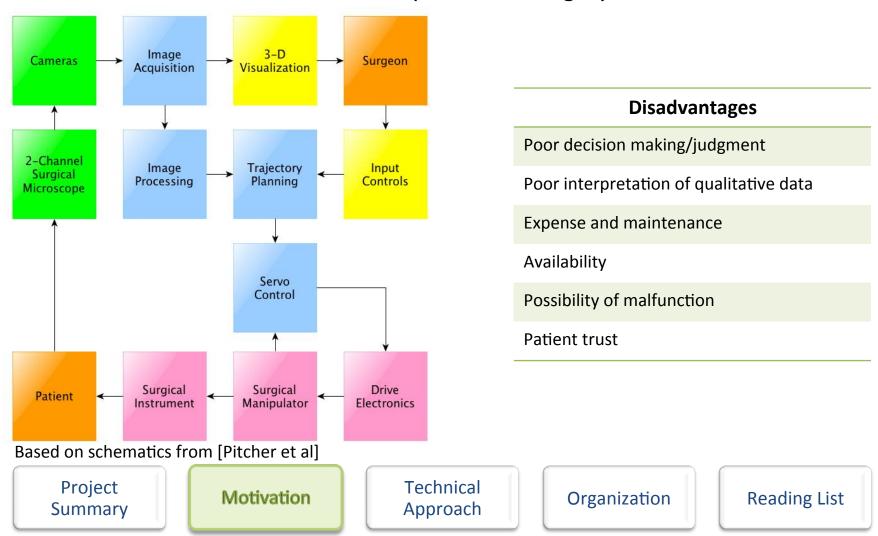
Lack of information for OR staff

Project Summary

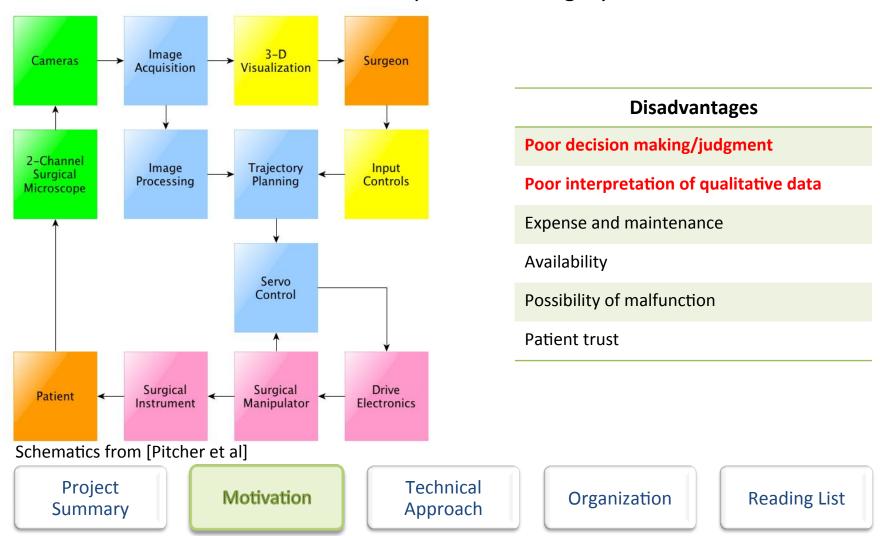

Motivation

Technical Approach

Organization



Robot-Assisted Ophthalmic Surgery



Robot-Assisted Ophthalmic Surgery

Robot-Assisted Ophthalmic Surgery

Aims & Significance

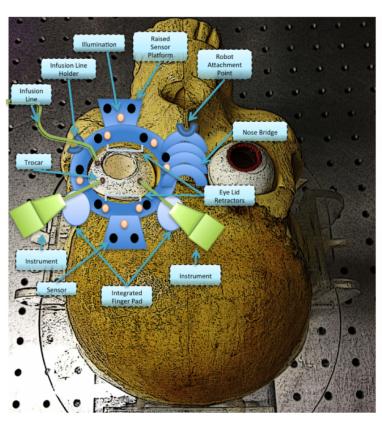


Figure provided by Marcin Balicki

Specific Aims

Create a miniature tracking system for the eye

Track surgical instruments in real time

Utilize redundancy to reduce line-of-sight problems

Utilize fiducial markers on tools for identification

Evaluate tracking accuracy

Project Summary

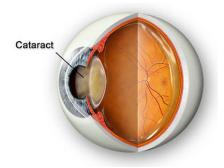
Motivation

Technical Approach

Organization

Aims & Significance

Significance/Future Directions


Monitor surgical protocols

Surgical skill assessment

Improve surgical safety

Robot-assisted surgery

Adaptation to other micro surgeries

Cornea image from [3]

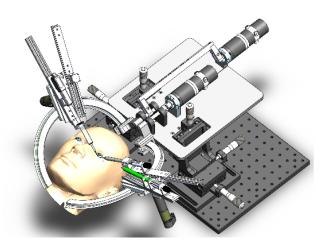


Image of IRISS system from [1]

Project Summary

Motivation

Technical Approach

Organization

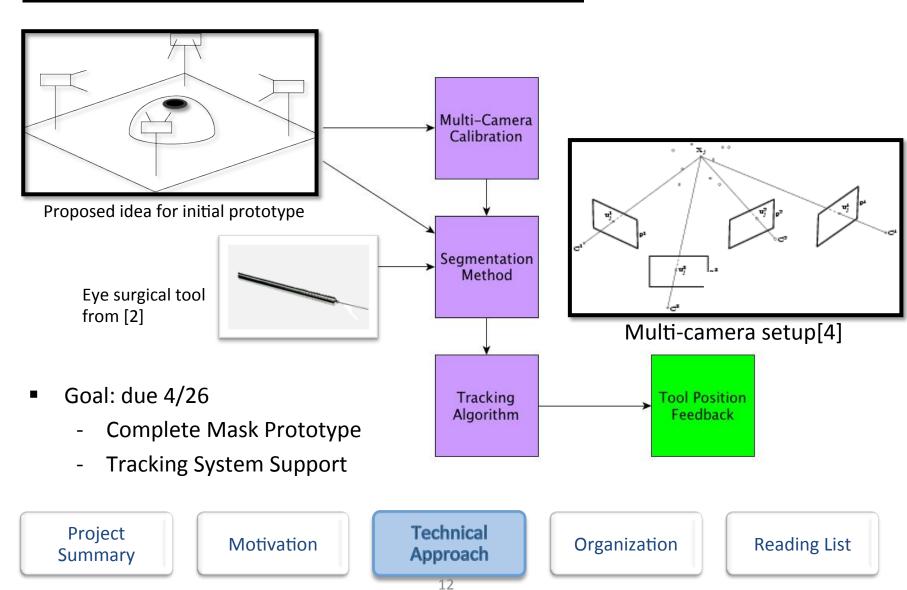
Phase 1: Research

Constraints for Camera
Type (IR vs. RGB)
Field of view
Focal length
Cost
Resolution
Placement/Orientation
Scale
Syncing Capabilities
Necessary Equipment

Computer Vision Techniques
Multi-Camera Calibration
Segmentation Methods
Tracking Algorithms
Libraries/Language Support

- Goal: due 3/11
 - Layout of Device & Equipment
 - Tracking System Design

Project Summary


Motivation

Technical Approach

Organization

Phase 2: Design & Build

Phase 3: Evaluation

- Design and run experiments for:
 - A static tool
 - A dynamic tool if system is online
 - Varied occlusion and illumination
- Goal: 5/13
 - Proof of Concept

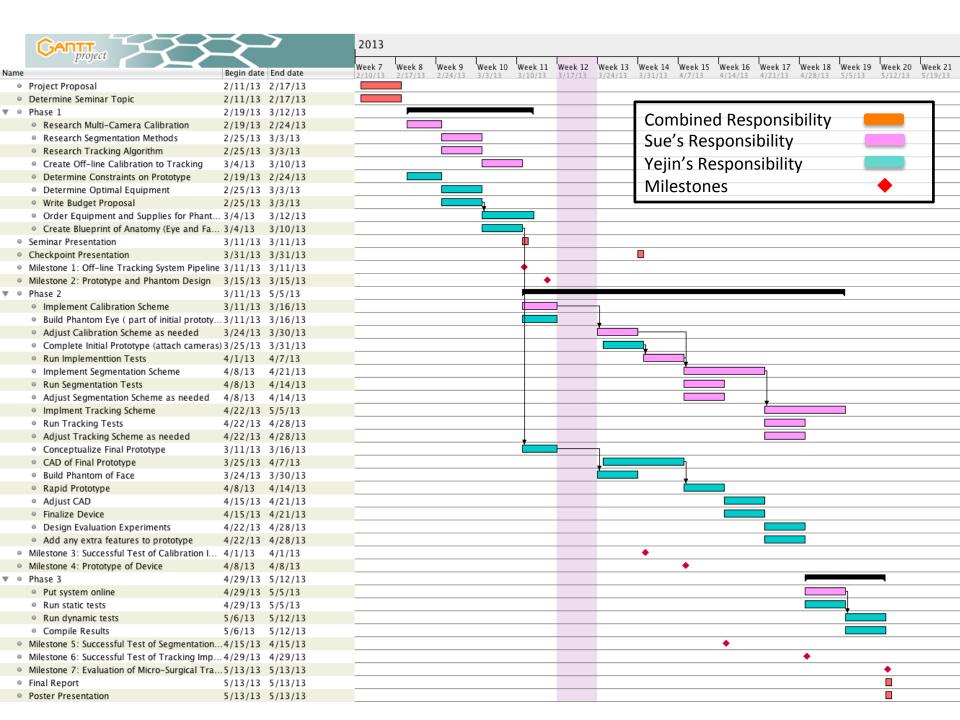
Project Summary

Motivation

Technical Approach

Organization

Deliverables


Minimum	Expected	Maximum	
CAD design of prototype	A scaled prototype	Life-size prototype	
Design of phantom	A scaled phantom	Life-size phantom	
Specifications of equipment	Offline multi-camera calibration	Evaluation of tracking accuracy	
Calibration scheme	Offline segmentation/ tracking algorithms	Real-time tracking	
Segmentation/tracking scheme			

Project Summary

Motivation

Technical Approach

Organization

Milestones

Date	Milestones	Responsibility
3/11	Offline Tracking System Design (Sue)	-Calibration Scheme -Segmentation Scheme -Tracking Scheme
3/18	Design of Prototype and Phantom (Yejin)	-Conceptual design of Eye and Face -CAD of the prototype
4/1	Build Phantom (Yejin)	-Build and attach eye to platform -Build and attach skull and nose to platform
4/1	Calibration Implementation (Sue)	-Implement single camera/multi camera calibration -Run test to verify success

Project Summary

Motivation

Technical Approach

Organization

Milestones

Date	Milestones	Responsibility
4/8	Prototype of Device (Yejin)	-Rapid prototype goggle device -Rigidly attach cameras -Attach miscellaneous fixtures
4/15	Test of Segmentation (Sue)	-Implement Segmentation Method -Run test to verify success
4/29	Test of Tracking Implementation (Sue)	-Implement tracking algorithm -Run test to verify success
5/13	Evaluation of Micro-Surgical Tracker (Yejin)	-Static tool coordinate accuracy -Dynamic tool coordinate accuracy -Miscellaneous accuracy

Project Summary

Motivation

Technical Approach

Organization

Dependencies

Dependency	Proposed Solution	Due Date
Ophthalmic Surgery Observation	Schedule through Marcin Balicki Acquire videos online	2/25 3/4
Access to Expertise	Weekly mentor meetings Survey literature	2/14 3/11
CISST Libraries	Training with Balazs Vagvolgyi If not, custom libraries as needed	3/4
Other Off-the-shelf Libraries	Research and plan accordingly Back-up plan: Implement on our own	3/11
Access to Steady Hand Eye Robot	Get initial plan approved Schedule through Marcin Balicki	3/11 4/8
Equipment	Evaluate constraints Purchase off-the-shelf components (OTC)	3/4 3/11
Funding	Propose budget plan to Dr. Taylor	3/4

Project Summary

Motivation

Technical Approach

Organization

Management Plan

- Yejin: prototype development and funding
- Sue: tracking system, wiki page and communication
- Meet weekly with either Marcin Balicki or Balazs Vagvolgyi
- Bi-weekly team meetings on Monday and Wednesday
- Approximately 30 hours per week combined

Project Summary

Motivation

Technical Approach

Organization

Reading List

- 1. Neily, Mills, et al. "Incorrect Surgical Procedures Within and Outside of the Operating Room." Archives of Surgery 16 Nov. 2009: Vol. 144, No.11:1028-1034. Web. 12 Feb. 2013
- 2. J. D. Pitcher, J. T. Wilson, S. D. Schwartz, and J. Hubschman, "Robotic Eye Surgery: Past, Present, and Future," J Comput Sci Syst Biol, pp. 14, 2012.
- 3. J.-P. Hubschman, J. Son, B. S. D. Schwartz, and J.-L. Bourges, "Evaluation of the motion of surgical instruments during intraocular surgery," Eye (London, England), vol. 25, no. 7, pp. 94753, Jul. 2011.
- 4. M. Nasseri, E. Dean, S. Nair, and M. Eder, "Clinical Motion Tracking and Motion Analysis during Ophthalmic Surgery using Electromagnetic Tracking System," in 5th International Conference on BioMedical Engineering and Informatics (BMEI 2012). 2012.
- 5. G. M. Saleh, G. Voyatzis, Y. Voyazis, J. Hance, J. Ratnasothy, and A. Darzi, "Evaluating surgical dexterity during corneal suturing," Archives of ophthalmology, vol. 124, no. 9, pp. 12636, Sep. 2006.
- 6. K. Guerin, G. Vagvolgyi, A. Deguet, C.C.G. Chen, D. Yuh, and R. Kumar, "ReachIN: A Modular Vision Based Interface for Teleoperation," in the MIDAS Journal Computer Assisted Intervention, Aug. 2010.
- 7. Tomas Svoboda. A Software for Complete Calibration of MultiCamera Systems. Talk given at MIT CSAIL. Jan 25, 2005.
- 8. K. Zimmermann, J. Matas, and T. Svoboda. "Tracking by an Optimal Sequence of Linear Predictors." IEEE Transactions on Pattern Analysis and Machine Intelligence. 31(4), 2009
- 9. A. Borkar, M. Hayes, and M. T. Smith, "A Non Overlapping Camera Network: Cali- bration and Application Towards Lane Departure Warning" IPCV 2011: Proceedings of the 15th International Conference on Image Processing, Computer Vision, and Pattern Recognition. 2011.

Project Summary

Motivation

Technical Approach

Organization

Questions?

<u>References</u>

- [1] http://maclab.seas.ucla.edu/iriss.shtml
- [2] http://www.dvice.com/archives/2012/10/new-surgical-to.php
- [3] http://www.sharpervisionks.com/Cataracts/
- [4] http://cmp.felk.cvut.cz/~svoboda/SelfCal/