

Prototype of a Microsurgical Tool Tracker

Team 5 Yejin Kim

Partner: Sue Kulason

Mentors: Marcin Balicki, Balazs Vagvolgyi, Russell Taylor

600.466 Advanced Computer-Integrated Surgery

Outline

Project Summary

- Problem: A need for tool tracker in eye surgery
 - Assess surgical performance
 - Ensure proper protocol
- Project Goal: Micro-Surgical Tool
 Tracker
 - Build a prototype of a goggle
 - Provide positional feedback

Figure 1. Idea proposed by Marcin Balicki

Project Aims & Significance

Paper

Experiment

Result

3

Conclusion

Relevance

Anlaysis

Aims & Significance

Specific Aims

Create a miniature tracking system for the eye

Track surgical instruments in real time

Utilize redundancy to reduce line-of-sight problems

Utilize fiducial markers on tools for identification

Evaluate tracking accuracy

Significance/Future Directions

Monitor surgical protocols

Surgical skill assessment

Improve surgical safety

Robot-assisted surgery

Adaptation to other micro surgeries

4

Project Summary Aims & Significance

Paper

Experiment

Result

Conclusion

Relevance

Paper Choice

- Title: Evaluation of the motion of surgical instruments during intraocular surgery
- Authors: J-P Hubschman, J Son, B Allen, SD Schwartz, J-L Bourges
- Published: Eye (2011) 25, 947-953. 2011
 Marcilian Publishers

Traditional Ophthalmic Surgery

Based on schematics from [Pitcher et al]

Project Background

Aims & Significance

Paper

Experiment

Result

6

Importance

Relevance

Robot-Assisted Surgery

Advantages Precision, accuracy, stability Amplified scale of motion Reduced tremor Automation Association of imaging systems Teleoperation

Project Background

Aims & Significance

Paper

Experiment

Result

Conclusion

Relevance

Technical Summary: Intent

- Purpose: To analyze the motion of microsurgical tools and fulcrum during intraocular surgery.
- Why: To determine the optimum remote center of motion for developing robotic surgical platform

Aims & Significance

Paper

Experiment

Result

Conclusion

Relevance

Technical Summary:

- Electromagnetic Sensors
 - Used to track motion of five different surgical tools and fulcrum of the eye
 - Small in size
 - Works in a concentrated area.

Technical Summary:

- Reliability test to assure accuracy of result.
 - Short and long translation in all three axis.
- Result were claimed near perfect.

Image from paper

10

Project Background

Aims & Significance

Paper

Experiment

Result

Conclusion

Relevance

Technical Summary: Set-up

11

Project Background

Aims & Significance

Paper

Experiment

Result

Conclusion

Relevance

Project

Background

Technical Summary: Experiment

Technical Summary: Result: Motion of Tools

Table 2 Rotation values in the three axes (x, y, z) and translation values in the z-axis surgical of surgical instruments during various steps of intraocular surgery

Surgical step	Probe	x-axis rotation (degrees)		y-axis rotat	ion (degrees)	z-axis translation (mm)	
		$Avg \pm SD$	Min–Max	$Avg \pm SD$	Min–Max	$Avg \pm SD$	Min–Max
LS	Handpiece	56 ± 20	38–98	32 ± 7	18–38	9±2	7–12
LS	Chopper	23 ± 11	10-43	46 ± 14	35-74	16 ± 13	7-43
LR	Handpiece	60 ± 24	30-92	33 ± 7	23-46	20 ± 16	8-53
LR	Chopper	21 ± 19	6-59	31 ± 29	7–90	10 ± 9	2-30
I/A	Probe	72 ± 14	52-97	48 ± 10	29-61	15 ± 5	7-21
PPV	Cutter	96 ± 44	47-180	142 ± 39	84-180	30 ± 5	23-39
PPV	Light	38 ± 8	23-48	64 ± 10	49-77	19 ± 4	12-23
PVD	Cutter	81 ± 26	40-115	147 ± 48	61-180	24 ± 6	13-29
PVD	Light	23 ± 5	14–28	25 ± 6	14–31	11 ± 4	8–16

Abbreviations: Avg, average; I/A, infusion-aspiration; LR, lens removal; LS, lens sculpture; PPV, peripheral posterior vitrectomy; PVD, posterior vitreous detachment; SD, standard deviation.

Table from paper

Project Background

Aims & Significance

Paper

Experiment

Result

Conclusion

Relevance

ERC | CISST Technical Summary: Result: Motion of Eye

Calculated mean and maximal area of motion at the fulcrum (eye's entry site) during each task

Axis	LS		LR		IA		PPV		PVD	
	$Avg \pm SD$	Max	$Avg \pm SD$	Max	$Avg \pm SD$	Max	$Avg \pm SD$	Max	$Avg \pm SD$	Max
X (mm ²)	6.27 ± 2.33	9.79	5.56 ± 2.22	9.22	12.15 ± 4.3	12.58	6.57 ± 3.66	11.85	6.14 ± 3.03	11.09
Y (mm ²)	3.56 ± 1.74	6.30	3.68 ± 1.46	5.88	6.93 ± 2.18	8.87	5.85 ± 2.84	7.84	3.29 ± 1.13	6.03
$Z (mm^2)$	1.74 ± 0.55	2.50	1.46 ± 0.31	1.97	2.18 ± 1.10	4.12	2.84 ± 1.63	4.13	1.13 ± 0.61	1.99

Abbreviations: Avg, average; I/A, infusion-aspiration; LR, lens removal; LS, lens sculpture; Max, maximal value; PPV, peripheral posterior vitrectomy; PVD, posterior vitreous detachment; SD, standard deviation.

Table from paper

Project Background

Aims & Significance

Paper

Experiment

Result

Conclusion

Relevance

ERC | CISST Technical Summary: Conclusion

Optimum robotic surgical assistance should allow maximum range of motion for each instrument and surgical task.

> **Dependencies for Angle of Rotation & Translation** Microsurgical tool Specific task Main task > Ancillary Task Performing hand Dominant hand > Secondary hand

> > 15

Project Background

Aims & Significance

Paper

Experiment

Result

Conclusion

Relevance

- More motion analysis with different intraocular procedures.
- Comparison with motion analysis done with different sensors (optical, inertia, etc.)

CIS Project Goal:

To build a device with sensors that output positional feedback of microsurgical tool during eye surgery.

Constraints for Design
Size of the camera
Field of view of the camera
Processing ability of the camera
Motion of the surgeon's hands
Available area around the patient's eye

Project Background

Aims & Significance

Paper

Experiment

Result

17

Conclusion

Relevance

CIS Project Goal:

To build a device with sensors that output positional feedback of microsurgical tool during eye surgery.

Constraints for Design
Size of the camera
Field of view of the camera
Processing ability of the camera
Motion of the surgeon's hands
Available area around the patient's eye

Project Background

Aims & Significance

Paper

Experiment

Result

18

Conclusion

Relevance

Critique

Strength

- Clear purpose of the paper
- High accuracy of the study
- Repeatable method and set-up of the study
- Result accounted for varying surgical tasks, tools and performing hand.

Weakness

- Tabulated result difficult to visualize.
- Unhelpful in determining orientation of camera for my prototype.
- Open-ended paper

Aims & Significance

Paper

Experiment

Result

Conclusion

Relevance

Questions?

<u>Reference</u>

- 1. Neily, Mills, et al. "Incorrect Surgical Procedures Within and Outside of the Operating Room." Archives of Surgery 16 Nov. 2009: Vol. 144, No. 11:1028-1034. Web. 12 Feb. 2013
- 2. J. D. Pitcher, J. T. Wilson, S. D. Schwartz, and J. Hubschman, "Robotic Eye Surgery: Past, Present, and Future," J Comput Sci Syst Biol, pp. 14, 2012.