

Prototype of a Microsurgical Tool Tracker

Team 5

Students: Sue Kulason, Yejin Kim

Mentors: Marcin Balicki, Balazs Vagvolgyi, Russell Taylor

600.466 Advanced Computer-Integrated Surgery

Outline

Project Summary

- Problem: A need for tool tracker in eye surgery
 - Monitor surgical protocol
 - Assess surgical performance
 - Improve surgical safety
- Project Goal: Micro-Surgical Tool Tracker
 - Build a prototype of a goggle
 - Provide positional feedback

Figure 1. Idea proposed by Marcin Balicki

Project Summary

Paper Selection

Key Results

Technical Approach

Project Summary

Paper Selection

Key Results

Technical Approach

Paper Selection

Title: Fast Inexpensive Color Segmentation for Interactive Robots

Authors: James Bruce, Tucker Balch, Manuela Veloso

Published: IEEE International Conference Intelligent Robots and Systems,

2000

Relevance to Project	
Color segmentation	V
Fast (real-time)	✓
Computationally inexpensive	✓
No special equipment	✓
Easy to implement	Δ
Robust	Δ

Project Summary

Paper Selection

Key Results

Technical Approach

Key Results

Problem:

- Real-time segmentation relies on specialized equipment

Solution:

- Utilize algorithmic efficiency
- Track 32 colors at 30 Hz

Importance:

- Make real-time segmentation affordable and accessible
- Doesn't sacrifice accuracy for efficiency
- Various computer vision applications

Project Summary

Paper Selection

Key Results

Technical Approach

Step 1: Color Threshold

- Extract YUV matrices
- Why? Robust against luminance

Binary Signal Decomposition of Threshold

Figure from Bruce et al.

Visualization as Threshold in Full Color Space

Project Summary

Paper Selection

Key Results

Technical Approach

ERC | CISST

Technical Approach

Step 1: Color Threshold

- Classify pixel color with logical AND gates
- Why? 2 operations rather than 192

Pixel_in_class = YClass[Y] AND UClass[U] AND VClass[V]

 $\begin{aligned} & \text{YClass[Y]} = \{00,11,11,11,11,11,11,11,11,11,11,\\ & \text{UClass[U]} = \{01,01,01,00,00,00,00,10,10,10,\\ & \text{VClass[V]} = \{00,00,00,01,01,01,00,10,10,10,\\ \end{aligned}$

Figure from Bruce et al.

Project Summary

Paper Selection

Key Results

Technical Approach

Step 2: Connect Components

- 2 runs of a tree-based union
- Why? Linear time bound
- (1) Scan row for adjacent pixels of the same color
- (2) Create disjoint forest of 'runs' with identifier for parent node
- (3) Scan runs for four-connectedness
- (4) Point each run's parent node to global parent
- (5) Run second pass to compress path

Project Summary

Paper Selection

Key Results

Technical Approach

1: Runs start as a fully disjoint forest

3: New parent assignments are to the furthest parent

4: If overlap is detected, latter parent is updated

Figure from Bruce et al.

Project Summary

Paper Selection

Key Results

Technical Approach

Step 3: Density-based Merging

- Merge similar objects based on a grouping force threshold
- Why? Account for bottom up region generation error and occlusion

Steps:

- Find pairs of components
- Merge
- Calculate density
- Check against threshold

$$(blue)/(blue + green) = .88$$

Project Summary

Paper Selection

Key Results

Technical Approach

Analysis

Significance

Color segmentation

Fast (real-time)

Computationally inexpensive

Cheap

No special equipment

Robust to luminance

Changes for our Project

Capture in RGB

Transform to YUV

No density-merging

Project Summary

Paper Selection

Key Results

Technical Approach

<u>Analysis</u>

Tested Applications:

- Probotics Cye Platform
- RoboCup-99 Robot

Improvements/Future Directions

Applications beyond robot-soccer

Analysis of accuracy of blob detection

Description of hardware set-up

Figure from Bruce et al.

Project Summary

Paper Selection

Key Results

Technical Approach

Paper Reviewed:

J. Bruce, T. Balch, and M. Veloso, "Fast and inexpensive color image segmentation for interactive robots," in Proc. IEEE Intl. Conf. Intell. Robot. Syst., 2000, pp. 2061–2066.

Clinical Background:

J. D. Pitcher, J. T. Wilson, S. D. Schwartz, and J. Hubschman, "Robotic Eye Surgery: Past, Present, and Future," J Comput Sci Syst Biol, pp. 1–4, 2012.

Neily, Mills, et al. "Incorrect Surgical Procedures Within and Outside of the Operating Room." Archives of Surgery 16 Nov. 2009: Vol. 144, No.11:1028-1034. Web. 12 Feb. 2013

Questions?