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Stereo Matching Using Belief Propagation

Jian Sun, Nan-Ning Zheng, Senior Member, IEEE, and
Heung-Yeung Shum, Senior Member, IEEE

Abstract—In this paper, we formulate the stereo matching problem as a Markov network and solve it using Bayesian belief
propagation. The stereo Markov network consists of three coupled Markov random fields that model the following: a smooth field for
depth/disparity, a line process for depth discontinuity, and a binary process for occlusion. After eliminating the line process and the
binary process by introducing two robust functions, we apply the belief propagation algorithm to obtain the maximum a posteriori (MAP)
estimation in the Markov network. Other low-level visual cues (e.g., image segmentation) can also be easily incorporated in our stereo
model to obtain better stereo results. Experiments demonstrate that our methods are comparable to the state-of-the-art stereo

algorithms for many test cases.

Index Terms—Stereoscopic vision, belief propagation, Markov network, Bayesian inference.

1 INTRODUCTION

STEREO vision infers 3D scene geometry from two images
with different viewpoints. This fundamental problem
has been investigated for many years not only in computer
vision but also in cognitive science and psychophysiology.
Recent applications such as view synthesis and image-
based rendering make stereo vision again an active research
topic in computer vision.

Classical dense two-frame stereo matching computes a
dense disparity or depth map from a pair of images under
known camera configuration. In general, the scene is assumed
Lambertian or intensity-consistent from different viewpoints,
without specularities, reflective surfaces, or transparency.
The known camera configuration can provide a powerful
epipolar geometry constraint for matching. Stereo matching
remains a difficult vision problem for the following reasons.

e Noise. There are always unavoidable light variations,
image blurring, and sensor noise in image formation.
A practical stereo algorithm must be robust.

e Textureless regions. This is also called the aperture
problem. The intensity-consistency constraint is use-
less in textureless regions. Thus, information from
highly textured regions needs to be propagated into
textureless regions for stereo matching, e.g., by using
spatial smoothness constraint.

e Depth discontinuities. The spatial smoothness con-
straint should be broken at object (depth) bound-
aries. In other words, information propagation
should stop at depth discontinuities.

e  Occlusions. Occluded pixels in one view should not
be matched with pixels in the other view.
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Clearly, stereo matching is an ill-pose roblem with
inherent ambiguities. The Bayesian approach provides a
promising way for such ill-posed problems because it treats a
task as an inference-preblem or finding the “best guess”
solution. For stereo matching, we want to infer scene structure
S given images I. The output from the Bayesiamapproach is
not only a single solution but also a posterior probability
distribution P(S|I). By Bayes law, P(S|I) x P(I|S)P(S),
where P(/|S) is the likelihood that encodes the process of
forward image formation and P(S) is the prior that encodes
our assumptions on scene structure.

The Bayesian approach has many advantages when
applied to stereo vision. It can encode various prior con-
straints, e.g., spatial smoothness, uniqueness, and the order-
ing constraint. It can also deal with uncertainties in stereo
matching. Because the Bayesian approach states explicitly
what assumptions are made, the strengths and the weak-
nesses of the proposed algorithm can be clearly examined. In
addition to stereoscopic vision, people also use other cues to
%)infer scene structure, e.g., shape from shading, shape from
shadows, shape from focus, shape from silhouette, and shape
from texture. The Bayesian approach provides a natural way
to integrate the information from multiple sensors.

There are two contributions in this paper. First, we
formulate stereo matching using three MRF’s and subse-

quently estimate the optimal solution by a Bayesian Belief

Propagation algorithm. Second, we propose a probabilistic
framework to integrate additional information (e.g., segmen-
tation) into the stereo algorithm.

The rest of paper is organized as follows: After reviewing
related work in Section 2, we propose in Section 3 a novel
stereo matching approach to explicitly model discontinuities,
occlusions, and the disparity field in the Bayesian frame-
work. In Section 4, Bayesian Belief Propagation, Lipplwd to
infer ereo matching. The basic stereo model is then
éxtended in Section 5 to integrate other cues such as region
similarity. The experimental results shown in Section 6
demonstrate that our model is effective and efficient. In
Section 7, we adapt the stereo model for multiview stereo.
Finally, we discuss in Section 8 why our stereo matching with
belief propagation can produce results that are comparable to
the state-of-the-art stereo algorithms.
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2 RELATED WORK

In this section, we review related stereo algorithms,
especially those using the Bayesian approach. We refer
the reader to a more detailed and updated taxonomy of
dense, two-frame stereo correspondence algorithms by
Scharstein and Szeliski [30]. A testbed for quantitative
evaluation of stereo algorithms is also given in [30].

A stereo algorithm is called a global method if there is
a global objective function to be optimized. Otherwise, it
is called a local method. The central problem of local or
window-based stereo matching methods is to determine
the optimal size, shape, and weight distribution of
aggregation support for each pixel. An ideal support
region should be bigger in textureless regions and should
be suspended at depth discontinuities. The central
problem of global algorithms is not only to define a good
objective function but also to provide an effective
computing method to find local or global minimum. In
the taxonomy of Scharstem and Szeliski [30], a local
method consists of %g & cost computation, a ega-
tion of cost, and patity computation; a glo
cOmSTsts—of—matd g cost computatlon and dlspanty
optimization. From the Bayesian point of view, matching
cost computation is a measurement or observation. The
most common matching costs, e.g., squared intensity
difference(SD), absolute intensity difference [20], normal-
ized-cross correlation [28], [7], binary matching cost [25],
rank transform [35], shifted absolute difference [3], are
ways of computing the likelihood function. Different
aggregation methods reflect different priors assumed on
scene structure. For example, a fixed-window method
implies a frontal-plane scene, and a 3D window method
limits the disparity gradient. Obviously, the fixed window
is invalid at depth discontinuities. Some improved
window-based methods, such as adaptive windows [20]
and shiftable windows [6], [33], [21] try to avoid windows
that span depth discontinuities.

Bayesian methods (e.g., [13], [18], [2], [10], [6]) are global

\>"‘)Qi7 methods that model discontinuities and occlusion. Baye51ar\

e

ethods can be classified into two categorie \ ynamic
programming-based o REs-based, dependin
“Computation model. Géiger et al. [13] and Ishikawa and
Geiger [18] derived an occlusion process and a disparity
field from a matching process. Assuming an “order
constraint” and “uniqueness constraint,” the matching
process becomes a “path-finding” problem where the global
optimum is obtained by dynamic programming. Belhumeur
[2] defined a set of priors from a simple scene to a complex
scene. A simplified relationship between disparity and
occlusion is used to solve scanline matching by dynamic
programming. Unlike Geiger and Belhumeur who enforced
a piecewise-smooth constraint, Cox et al. [10] and Bobick
anmﬂe_ﬁl—cm%;g‘uire the smoothing prior.
Assuming corresponding features are normally distributed
and a fixed cost for occlusion, Cox proposed a dynamic
programming solution using only the occlusion constraint
and ordering constraints. Bobick and Intille incorporated
the Ground Control Points constraint to reduce the
sensitivity to occlusion cost and the computation complex-

ity of Cox’s method. These d icprogramming methods
assume that the occlusion cost is ; Same in each scanline.
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Fig. 1. A scene illustrates the geometric relationship among depth
process D, discontinuity process L, and occlusion process . Matched
points between I, (the reference view) and the right image I are
connected by thick lines.

Ignoring the dependence between scanlines results in the
characteristic “streaking” in the disparity maps.

Markov Random Fields (MRF) is a powerful tool to
model spatial interaction. Bayesian stereo matching can be
formulated as a maximum a posteriori MRF (MAP-MRF)
problem. There are several methods to solve the MAP-MRF
problem: simulated annealing [14],_Mean-Field annealing
[12], the Graduated Non-Convexity algorithm (GNC) [5],
and Variational approximation [17]. Finding a solution by
simulated annealing can often take an unacceptably long
time although global optimization is achievable in theory.
Mean-Field annealing is a deterministic approximation to
simulated annealing by attempting to_average over the

statistics of the annealing process. It reduces execution time
mmGNC can only be applied
to some special energy functions. Variational approxima-
tion converges to a local minimum. Recently, the Graph Cut
(GC) method [8] has been proposed based on the max flow
algorithm in graph theory. This method is a fast efficient
algorithm to find a local minimum for a MAP-MRF whose

-ofT the— energy function is Potts or Generalized Potts.

The absence of an efficient stochastic computing method
has made probabilistic models less attractive. In this paper,
we formulate a probabilistic stereo model that can be
efficiently solved by a Bayesian Belief Propagation algorithm.

3 BAsIic STEREO MODEL

We model stereo matching by three coupled MRF’s: D is the
smooth disparity field defined on the image lattice of the
reference view, L is aspatial line process located on the dual of
the image lattice & esents explicitly the presence
absence of depth discontinuities in the reference view, and O is
a spatial binary process to indicate occlusion regions in the
reference view. Fig. 1 illustrates these processes in the 1D case.

Using Bayes' rule, the joint posterior probability over D, L,
and O given a pair of stereo images I = {I;, Ip}, where [}, I
is the left (reference) and right images, respectively, is:

P(I|D,L,O)P(D, L,0O)
P(I)

P(D,L,0O|I) = (1)
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Without occlusion, {D, L} are coupled MRF's proposed by
[14] to model a piecewise-smooth surface with two random
fields: one representing the variable required to estimate,
the other representing its discontinuities. Similar models
such as the “weak membrane” model [5] in surface
reconstruction and the “Mumford-Shah” model in image
segmentation [26] have also been studied in computer
vision. However, in image formation of stereo pairs, the
piecewise-smooth scene is projected on a pair of stereo
images. Some regions are only visible in one image. Each
pixel in the occlusion region has no matching pixel in the
other view. For example, in Fig. 1, points b.c, g, h from I,
W Adding occlusion process O nto
the piecewise-smooth model {D, L} is therefore necessary.

3.1 Likelihood

We assume that the likelihood P(/|D, O, L) is independent
of L,

P(I|D,0,L) = (2)

because the observation (I) is pixel-based. Assuming that the

observation noise follows an independent identical distribu-

tion (i.i.d.), we can define the likelihood P(I|D,O) as:
o i
P(I|D,0) H exp(—F(s,ds, I)).
s¢0

P(I|D,0)

(3)

where F(s, d,, I) is the matching cost function of pixel s with
dis _given observation I. Our likelihood considers the
pixels only in nonoccluded areas {s¢ O} because likelihood
in occluded areas cannot be well defined.

For the matching cost, we use Birchfield and Tomasi’s
pixel dissimilarity, which is provably insensitive to image
sampling [3]:

F(s,ds, I) = min{d(s, s', I)/o;. d(s',5,1)/0s},

where

d(s,8.0) =
min{|7(s) = I3 (). 1L(s) = Ir(s")], [To(s) — I5(s))|},
s s

s' is the matching pixel of s in the right view with disparity ds,
1 (') is the linearly interpolated intensity halfway between '
and its neighboring pixel to the left, I} (s') is the linearly
interpolated intensity halfway between s’ and its neighboring
pixel to the right, U(s’, s,1) is the symmetric version of
d(s.s', 1), and o, is the image noise variance to be estimated.

3.2 Prior
There is no simple statistical relationship between coupled
fields {D,L} and field O. The ordering constraint [1]
assumes that the order of neighboring correspondences is
always preserved. This ordering allows the construction of
a dynamic programming scheme. However, this constraint
may not always be true. For instance, this constraint is
violated when a thin object is close to the vie s shown
inFig T,a thinm;(—iﬁé?&fw iand j
in /; to be different from that of their matched points in 1.
In this paper, we ignore the statistical dependence
between O and {D. L} and assume that:

P(D.0.L) = P(D, L)P(Q).

L

(4)
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The Markov property asserts that the conditional prob-
ability of a site in the field depends only on its neighboring
sites. Assuming D, L, and O follow the Markov property, by
specifying the first order neighborhood system G(s) and
N(s) = {t|t > 5,t € G(s)} of site s, the prior (4) can be
expanded as:

P{D. L, 0) o H H eXP(_(ff{i(l“C,i"l*‘l))HexP(’“”r(‘Os))’

5 LeN(s)

(5)
where @.(d,, dy, ly;) is the joint clique potential function of
sites dy, d; (neighbor of d,) and L,,. I, is the line variable
between d; and d;, and 7.(0) is the clique potenhal?unctxon of
05. @e(dy, dy, 1) and 7.(0;) are user-customized functions to
enforce the contextual constraints for stereo matching. To

enforce spatial interactions between d, and [,;, we define
weldys, dy, L) as follows:

Pclds, diy ls) = pds. di)(1 = Log) + ¥(ls2)- (6)

where ©(d,.d;) penalizes the different assignments of
neighboring sites when no discontinuity exists between
them and ~(/,) penalizes the occurrence of a discontinuity
between sites s and ¢. Typically, v(0) = 0.

By combining (3), (5), and (6), our basic stereo model (1)
becomes:

Max
2P(D, 0, L|I) :xHexp (=F(s,ds, 1)) Hexp( n.(05))
P SGyuv- 520

I1 IT et

s teN(s)

P(D.0:LIT)

4 APPROXIMATE INFERENCE BY BELIEF
PROPAGATION

To find the MAP solution of (7), we need to:

o(dy, d)(1 = Ley) + v(sr)))-

(7)

e determine the forms and parameters of ¢(d;,d;),
v(ls.), and n.(oy) and

e provide a tractable inference algorithm.
It is, however, nontrivial to specify or to learn appropriate
forms and parameters of ¢(ds, d;), v(ls¢), and, especially,
n:(0y). Even if the forms and parameters are given, it is still
difficult to find the MAP of a composition of a continuous
MRFs D and two binary MRFs L and O. Although the Markov
Chain Monte Carlo (MCMC) [14], [15] approach provides an
effective way to explore a posterior distribution, the
computational requirement makes MCMC impractical for
stereo matching. The solution space of our model is
Q=0 x x, where Q,, €, and £, are the solution
spaces of depth, discontinuity, and occlusion, respectively.

This is why we need to make some approximations on both
the model and algorithm. In Section 4.1, the unification of line
processand robust statistics [4] provides usa way toe 1m1ngte
the binary random variable from our MAP problem. In
Section 4.2, after converting MRFs to the corresponding
Markov network, the approximate inference algorithm, a
loopy belief propagation algorithm can be used to approx-
imate the posterior probability for stereo matching.
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2.0. Robust function p(x) =

—In{{1 ~ e} exp{— =) + ¢} derived from TV model.

Parameters » and «, respectively, control the sharpness and the upper-bound of the function.

4.1 Model Approximation: From Line Process to

Outlier Process
Maximization of the posterior (7) can be rewritten as
(D, L,OlI}

w\}’ %‘}‘M
/

max4s max | | exp{—(F{s,d.. [}(1 —o,) + nd0.)0.))
5 l 7~ H xp(—{F (s, d,. I)( 5} T 1N\05)0;5})

HizL\'
2.L.0

o~
(=5
~

m;dxH H exp(—{pld.. d (1 — L4) + (L))

s teN{s} 5730 iy

because the first two factors on the r h.s of (7) are independent
of L and the last factor on the r.h.s of (7} is independent of O.

Now, we gglax the binary processes /., and o, to analog
processes [Z, and of (“outlier process” [4]) by allowi
{, <1 and 0 < ¢ < 1. For the first term in (8),

mga:He.\:pl—(F(s. d,. (1 — 0f) + n.(02)0l))
(9
40 expx—-mmz (Fis,d., D){1 — 6%) + 1.(0%)0%)).

where mm;\: (Fis,di. T(1 — 0?) + n.{0?)0?) is the objective
function of a robust estimator. The robust function of this

robust esmnator*{?]—?sh"“‘?

palds) = mm(l-(s d,, I){1 — 0} + n.{02)0l).

&

(10)

For the second term in (8), we also have a robust
function »[Jp(‘d,q. de )

pidydi) = n;mx old di(l — 12, + (%)),

at

(11)
We get the posterior probability over D defined by two
robust functions:

PLD ) o chp{ paid, )H H exp(~p,(d,, d}).

A reNis)

(12)

Thus, we not only eliminate two analog line processes
via the outlier process but alse model outliers in measure-
ments. We convert the task of modeling the prior terms
{nplo ). pldo d ), vy ) exphicitly into defining two robust
functions puid,) and pg,(d..d,) that model occlusion and

discontinuity implicitly,
In this paper, our robust functions are derived from the

Total Variance (TV) model {23] with the potential function
plr) = irl because of its discontinuity preserving property,
¢ truncate this potential function 25 our robust function:

)-.\(
2

: VR (s dy. D A
pafds) = — lu((] - c:d;\oxp(——‘—L;;-‘) -+ F,,)
o4

e

Fig. 2 shows different shapes of our robust functions. By
varying parameters ¢ and o, we control the shape of the
robust function and, therefore, the posterior probability.
After approximating the model, the next task is to
provide an effective and efficient inference algorithm. We
describe below how the belief propagation algorithm is
used to compute the MAP of the posterior distribution {12).

{ L
pold,. d;) = ~!nk(l — &) e\p( {14}

4.2 Algorithm Approximation: Loopy Belief
Propagation

mg.._.\,_]n the literature of probabilistic graph models [19], 2a Markov

network is an undirected graph as shown in Fig. 3. Nodes
{x.} are hidden variables and nodes {y.} are observed
variables. By denoting X = {x,} and ¥ = {y.}, the posterior
P{X1Y) can be factorized as:

PEXIY) o H {2y, Ys) H H Wl 2l {15)

5 teN{s)

o

where v, (x,. 2, is called the compatibility matrix between
nodes . and xy, and ¥ (x, "’Q is called the local evidence
for node x.. In fact, ¢ (r.,1.) s the observatio probability
ply.lz, ). If the number of discrete states of z, is
isan L x L matriXand ©,{z,. y,) is a vector with L elements.

It can be observed that the form of our posterior (12) is
same as the form of (15). If we define

[{, T AR

bulzs.2) = exp(=p, (20, 2.)). (16)

Fig. 3. Local message passing in a Markov Network. Gray nodes are
hidden variables. White nodes are observable variables, In the “max-
pmduc(" aigonthm, the new message sent from node », to 4y is:
e e~ g o soleg e dmymaymy pins . The belief at node », is
computed as: m EERIVT ey {1H s Ty (000G 4«

R et

Z
f.'{m] mln

Mya My, M

&t &l
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Fig. 4. Compatibility matrix #(z,.7.). The range of disparity is

(din, as ] A larger box represents a bigger value. Fig. 5. (a) seg(s) = seg(t). The left shows the first row of yiy (x, ) when

node ». and =, are in the same region. (b} seg(s) # seglt). The right

3 ; A & h i s (L5, 2 s T in di
Ve, Us) e (—palas)). an shows the first row of . (., z,) when node z, and z; are in different

regions. ({«, = 0.01,0, = 1.0, A, = 0.03). :

our posterior (12) is exactly the posterior of a Markov A has L stdes
network. Fig. 4 gives an illustration of ¥.(z,, ;) for our 2. Update messages 1y (1) iteratively fori= 1‘me€ V\Q’d\/
stereo model. Thus, finding the MAP of (12) is equal to e g \ ‘
finding the MAP of a Markov network. mit (@) — kmax v zomy(@) [ mi(zo.

For this Markov network, exact inference such as variable : o e o R X et e
elimination is obviously intractable due to the large state Xgen Xe) Vﬁb{ SRR
space of D. Approximation methods include variational 3. Compute beliefs
methods, sampling methods, bounded cutset conditioning, e ot
and parametric approximation methods [19]. In particular, ) b g e H o fix 2d e e
loopy belief propagation is a linear time algorithm propor- @ Wiy llé—fiﬁz—'f" e
tional to the number of hidden nodes. Loopy belief propaga- é‘v/) ¥ Sl il by(i).
tion applies Pearl’s algorithm [27] to the graph thathas loops. L MNEE WV R Pe N (Xg)
For graphs without loops, Pearl’s algorithm is an exact For example, in Fig. 3, the new message sent from node

inference method. For graph with loops, such as our Markov  to x, is updated as: m{g" « kmax,, Yoy, T2 )mymsyma,

network for stereo matching, the belief propagation algo-  ms,. The belief at node z; is computed as: by — iy

rithm cannot guarantee the global optimal solution. Despite  m21713,17741M5.1 (the product of two messages is the

loops in the network, however, belief propagation has been ~component-wise product); » is the normalization constant.

applied successfully to some vision [11] and communication The computational complexity of a standard “max-

[341 p[()blems _recenﬂy_ productm, where N is the number % Kﬁ
Belief propagation (BP) is an jterative inference algorithm of pixels and T is the number of iterations. Most of the 6 ¥

that propagates messages in the network. Let 1 {z.. 2:) be computation focuses on the multiplication of matrix

the message that node z, sends to z;, m.(zs ¥ be the oy (r,,x,) and vector my(x) [T, e nime, s(zs). However,

message that observed node y, sends to node z, (in fact, in our experiments, some statistical properties of messages

m(ze.y,) =925 y5)), and b.(z,) be the belief at node T.. ean be used to speed up belief propagation.

Note that (2. 21), melz, ), and b,(z,) are all vectors Propagation Speedup. It can be observed that each row  _

/i le simpli [ac: 3 TTand ; ; g ami
________gl__\___’mt,h L _eigments. ‘{‘%fw,l_,n\,l‘f h’:* l:’ dl{ ?SB [Z’*f].gf“l : t}‘:m U of Yu(zs, ) is a unique peak distribution in our stereo o 4
Ty Y Ma( Ly ) s rithm . ) - ?
(L, 4s) 85 1s(2,). There are two kinds 0 algorithms .\, jel In our experiments, most messages have unique ¢

with different message update rules: “max- an R S :
“sum-product” which maximize the W(‘“Y) peaks. We can exploit this property to identify unnecessary
oF The Tetwork and the W‘)f each node Computation during iterations. We simplify matrix
e T T T 3 5 ;
P(.1Y), respectively. The standard “max-product” algo- pa(as.ze) as o], af] s mal@s) Thentena "“""(".‘-‘) as b
rithm is shown below: and m';'(x,) as c. The message update at one iteration is:
{. Initialize all messages m(sy) as uniform distribu- efi) = argjnax a;(j) - b(). (18)

tions and messages m.(z;) = ¢(2,,ys)-
i S

: _ meelXg) TABLE 1
)v‘ns( Xg A 3;) " q'g( Yg, 35) Quantitative Statistics Based on Known Ground Truth Data

e e g pr e s ISR T T
T B Al dpia e ;
m. ( x$ w =ik onocclusionregions D
Sk 4 Percentage of bad matching pixels in
i ik b textureless regions T

By = % T,.1 (ld{s) — dr(s)] > da)

entage of bed matching pixels in | o
Percentage of bad matching pixels in B 4o (1) = Bl b

depth discontinnity regions D

ke 4 all our expedments.



