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1 Introduction to Stereo Problem

Vision-based stereo has a solid support from the visual perception, is also a fundamental

part of the broader 3D reconstruction problem, and is a classical problem in not only 3D

computer vision [3, 10, 2] but also photogrammetry [3]. The key task of stereo is to estimate

the depth from the camera to any point in a stationery object, or equivalently the disparity

of the same object point in two different views. The disparity or depth is the key information

for 3D reconstruction, display and visualization, as well as scene understanding or parsing,

and robotic perception. Surely, it is natural to think about obtaining depth in a physical way

as widely done in photogrammetry, rather than an algorithmic way. There are numerous

range sensors in the market: active range scanner, structured light scanner, RGB-D sensors

(essentially infrared cameras or formally thermographic cameras) such as Primesense Sensor

embedded in the Microsoft Kinect with a projector, laser scanners such as Velodyne LIDAR

Sensor used in Google Autonomous Cars, and so on. Once breaking the black-box, we will

know that RGB-D cameras rely on either active stereo or time-of-fight sensing to generate

depth estimates [4]. Nonetheless, they do have application limitations, such as the distance
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to the object, precision, noisiness, field of view, restrictive environments, and so forth. For an

example, range sensors are seldom embedded in endoscopic sensors for clinical uses. Hence,

in this proposal we will focus on vision-based stereo and will not consider range sensors.

Typically, thinking about human vision, the binocular stereo or the formally called stere-

opsis is stereo’s basic problem for estimating the disparity or parallax from two synchronized

views with the perspective angle in a certain range, which is usually called 2.5D vision, name-

ly not real 3D. Note that there are some constraints: (1) synchronized : no trouble if the object

is static; (2) angle in a certain range: neither too close nor too faraway if the radius if fixed.

Multiple synchronized views can be handled either in a straightforward way as multiple pairs

of binocular stereo problems or jointly as a single stereo problem considering the cross-view

spatial smoothness or formally photoconsistency, which can be achieved by the rectification

or Plane Sweep (i.e., a series of homographies) [11]. Furthermore, continuous overlapping

views from video is an extension of multiple-views [5, 14]. In this case, the object or sur-

face of interest is still unique, while the cross-view spatial smoothness becomes cross-frame

temporal coherence. We can still assume that adjacent sequential views are synchronized, as

long as the video frame rate is reasonably high and the angle constrain is satisfied. Moreover,

stereo from non-overlapping views in videos is more like a structure-from-motion paradigm.

Namely, then we are trying to solve a set of continuous stereo problems. Finally, as a lax

intuitive illustration, the generated disparity map is similar to a color-coded segmentation

map: pixels in the same region more or less have similar depth, while those in different region

normally have different depth. Formally, in stereo, a disparity space image (DSI) is gener-

ated and analyzed. Notably, there are works on the monocular depth estimation without

range sensors. Some use the de-focus cue or foreground-background segmentation as a prior,

while some others employ supervised learning [8], as we will explore in this project.

For the fundamental two-view stereo matching problem, feature matching based epipolar

geometric methods are basically solid [3, 10, 2]. There are a systematic series of multi-view
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geometric theories to handle various types of view transformation and even the camera’s

radial distortion [3]. The key is to optimize some measures or statistics, such as minimizing

the classic re-projection error or maximizing the photoconsistency normally defined as [11]

d(x, y, k) = argmaxd C(x, y, d) = argmaxd
∑
k

(
Ĩ(x, y, d, k)− Ir(x, y)

)2
(1)

where d denotes the disparity, (x, y) is a pixel location, k denotes the camera ID, Ir denotes

the intensities of a reference image relating to a chosen reference camera, and Ĩ(x, y, d, k)

denotes the intensities of a generalized disparity space volume (a group of DSI). The pa-

rameterization is normally achieved through a planar homology [3]. In this optimization

framework, the routine is the classic Least Squares and its numerous improvements in ro-

bust statistics. Normally, there are only a few matched features, so this class of methods are

also called sparse correspondence based methods [11]. However, they rely too much on ro-

bust and accurate feature matching, which is not always the case. In some applications such

as endoscopic reconstruction, the object has distortions or formally nonrigid deformations

even over a few frames. Then, the basic assumption of a stationery object does not strictly

hold. Besides, illumination conditions can be poor and change a lot, which may result in

that the object in some view’s image is textureless.

In the recent decade, graph-based global optimization methods has break the domi-

nation of the above optimization framework (e.g., maximizing photoconsistency), such as

MRF-based Graph cuts [1]. Now, global optimization methods has dominated the top of

the Middlebury stereo rankings, and provides the core methods among newly-established

more challenging KITTI stereo benchmark’s ranking. Graph cuts is a generic optimiza-

tion framework incorporating problem formalization as well as optimizing the objective by

Max-flow/Min-cut [1]. Similar with graph-based segmentation methods, graph-based stereo

methods try to assign disparities by minimizing a global function considering both pixel
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intensity (i.e., data term) and neighboring links (i.e., smoothness term). One merit of this

framework is a certain flexibility to design the objective and constraint, according to the

actual problem. This way can be heuristic, while the most commonly seen formulation is

E(x,y) = µ
∑
i

U(xi,y) + (1− µ)
∑
i∼j

V (xi, xj,y) (2)

where E is the total MRF energy, U is one data term, V is one smoothness term, µ specifies

a weight, xi is a random variable denoting the disparity of one pixel i, yi is another random

variable denoting the observed intensity of one pixel i, pixel i and pixel j are neighbors,

x denotes a matrix or an array composed of all pixels’ disparity, and y denotes a matrix

or an array formed by all pixels’ intensity. This optimization framework often produce

better performances than epipolar geometric methods, because they can incorporate precise

constraints from either defined or learned prior knowledge, and can give a better balance of

region and boundary properties [6]. This superiority is not only verified in stereo but also

image segmentation, for which Graph cuts dominates the mainstream methods (see Berkeley

benchmark evaluations and more challenging PASCAL VOC Segmentation competitions).

Since the data representation is in the pixel level, this group of methods are also called dense

correspondence based methods [11].

Furthermore, it is natural to think about learning the parameters for the graph energy

objective using probabilistic models [15, 9, 13, 7], instead of heuristically setting them. While

its flexibility and capability to handle complex data such as video streams is appealing, the

primary challenge lies in the lack of training data with ground-truth disparities. Either we

try to design unsupervised/weakly-supervised learning methods by estimating disparities,

or we have to prepare labeled training data. One drawback of supervised learning is that

before the learner can be generalized to output labels for unseen testing data, training data

with labels neend to be inputed. Then, when labels of training data are even not available,
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researchers will argue: if I can estimate the labels for training data, why not directly doing

it for testing data? Empirically, there do exist a trade-of between the cost of learning and

direct estimation, both in complexity and performance. In general, it is welcome to pay off

a little bit first and win more later. However, there is no easy conclusion till now. That’s

why we will perform an empirical analysis through this project.

Actually, Zhang and Seitz actually have provide an solution [15], by iterative parameter

estimation from previous disparity predictions. Moreover, Scharstein and Pal extend the

formulation 2 to a discriminative probabilistic model - CRF. Their learning based stereo has

shown a potential usage in the view synthesis for 3D TV display [12].

2 Problem Formulation by Graphical Models

Unlike a classical application of probabilistic graphical models - clinical data parsing, stereo

matching is not so intuitive. To encode the domain knowledge from 3D Vision, it is necessary

to briefly review its formulation.

CRF is a discriminative extension of MRF, by conditionally normalizing the MRF energy

E in Eqn. 2 over all possible values for each xi and each pixel i as [7].

P (X = x | y) =
1

Z(y)
exp

(
− E(x,y)

)
(3)

where the normalizer

Z(y) =
∑
x

exp
(
− E(x,y)

)
(4)

In the above formulas, E(x,y) is the total graph energy defined in Eqn. 2, Xi is a dis-

crete random variable taking on values xi from a finite alphabet X = {0, ..., (N − 1)}, the

concatenation of all random variables X takes on values denoted by x, and y denotes the

conditioning observation [7]. The key distinction between a CRF and a jointly defined MRF
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is that the partition function of an MRF does not depend on the observation y and nor-

malizes a joint distribution over the random variables X and a set of random variables Y

defined for y. See an elaboration in [7].
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