

Project Checkpoint Presentation (April 23rd 2013)

Interfacing APL Snake End Effector to LARS

Group 3

Piyush Routray & Ashish Kumar

Outline

- Project Summary
- ➤ Background and Significance
- Original Project Plan
- ➤ In Progress
- ➤ Project Plan Timeline
- ➤ Reading List

Statement of Our Project

The main and static aim of our project is to interface the APL Snake end effector to the LARS and achieve end-point control.

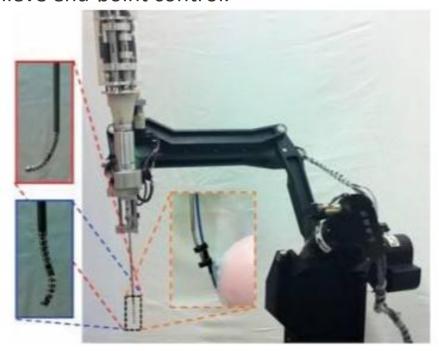


Image from: Tutkun Şen: Elastography with LARSnake Robot

Background & Significance

- The APL Snake was initially developed with an intention of use in hip osteolysis removal surgery.
- Various potential applications have been thought of since development, such as use in heart surgeries etc.

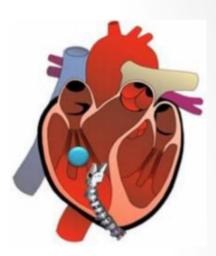


Image courtesy: Tutkun Sen

- Constantly being upgraded to be a self sustained surgical tool.
- Intuitive control interface for the manipulator, has since, been designed and integrated with the snake using PHANTOM® Premium haptic controller.
- LARS is an ideal system to aid autonomous operation of the APL Snake due to its mobility, dexterity, and versatility of use with various end-effectors.

Original Plan: Project Stages

Minimum:

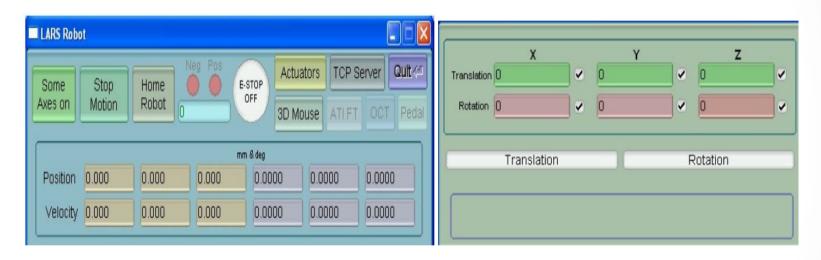
Fix the LARS———————————————————————(Mar 15th) End-point control—————————————————————(Apr 29th)

Expected:

3D Registration and alignment with insertion axis— \rightarrow (May 6th) (previously April 22nd)

Maximum:

*after the end of EN.600.446 timeline Prof. Armand expects us to demonstrate application on a cadaver and record video of the same.

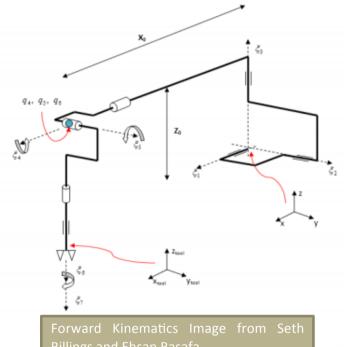


In -Progress

Interface Development.

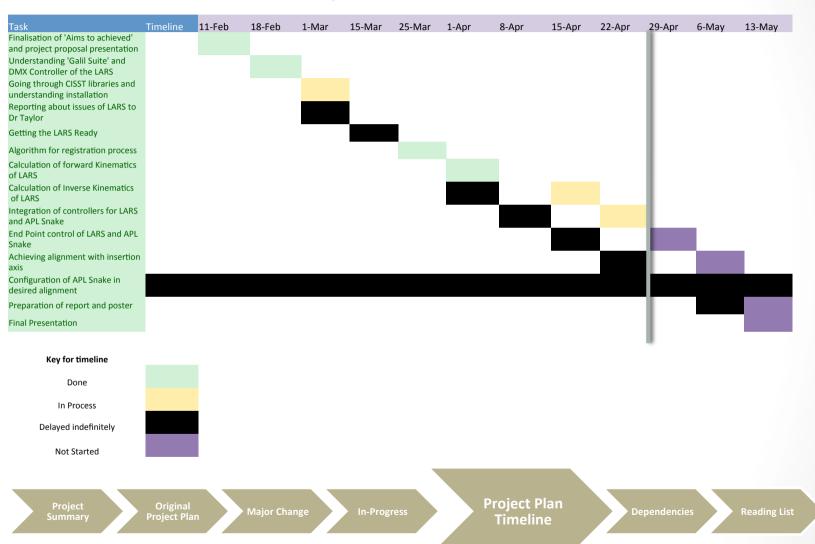
The interface to control the LARS and Snake using FLTK is being designed:

Images from report of Seth Billings and Ehsan Basafa



In -Progress

Inverse Kinematics


Project Plan Timeline

Project Plan Timeline

Reading List

- [1] M. D. M. Kutzer, S. M. Segreti, C. Y. Brown, R. H. Taylor, S. C. Mears, and M. Armand, "Design of a new cable-driven manipulator with a large open lumen: Preliminary applications in the minimally invasive removal of osteolysis," in Robotics and Automation, 2011. ICRA 2011. Proceedings of the 2011 IEEE International Conference on, 2011.
- [2] J. Funda, R. Taylor, B. Eldridge, S. Gomory, and K. Gruben, "Constrained Cartesian motion control for tele-operated surgical robots," IEEE Transactions on Robotics and Automation, vol. 12, pp. 453-466, 1996.
- [3] Galil Motion Control, Inc. DCM-40×0 User Manual, Rev. 1.0c. Dec, 2008. www.galilmc.com
- [4] Galil Motion Control, Inc. DCM-40×0 Command Reference, Rev. 1.0d. Dec, 2008. www.galilmc.com
- [5] G. Hamlin and A. Sanderson, A Novel Concentric Multilink Spherical Joint with Parallel Robotics Applications. IEEE, pp. 1267-1272. 1994.
- [6] A. Kapoor, M. Li, and R. Taylor, Constrained Control for Surgical Assistant Robots. IEEE Int'l Conf. on Robotics and Automation. pp. 231-236. May 2006.
- [7] A. Kapoor. Motion Constrained Control of Robots for Dexterous Surgical Tasks. Johns Hopkins University Ph.D. Thesis. Sept, 2007.
- [8] P. Marayong, et. al. Spatial Motion Constraints: Theory and Demonstrations for Robot Guidance Using Virtual Fixtures. IEEE Int'l Conf. on Robotics & Automation. pp. 1954-1959. Sept. 14-19, 2003.
- [9] R. Taylor, et. al. A Telerobotic Assistant for Laparoscopic Surgery. IEEE Engineering in Medicine and Biology. pp. 279-288. May/June 1995

QUESTIONS?

THANK YOU!