Statistical Atlases of Bone Anatomy:
Construction, Iterative Improvement and
Validation

Gouthami Chintalapani!, Lotta M. Ellingsen?, Ofri Sadowsky!,
Jerry L. Prince?, and Russell H. Taylor!

Johns Hopkins University, Baltimore, USA
greddy@cs. jhu.edu

Abstract. We present an iterative bootstrapping framework to create
and analyze statistical atlases of bony anatomy such as the human pelvis
from a large collection of CT data sets. We create an initial tetrahedral
mesh representation of the target anatomy and use deformable intensity-
based registration to create an initial atlas. This atlas is used as prior
information to assist in deformable registration/segmentation of our sub-
ject image data sets, and the process is iterated several times to re-
move any bias from the initial choice of template subject and to improve
the stability and consistency of mean shape and variational modes. We
also present a framework to validate the statistical models. Using this
method, we have created a statistical atlas of full pelvis anatomy with
110 healthy patient CT scans. Our analysis shows that any given pelvis
shape can be approximated up to an average accuracy of 1.5036 mm
using the first 15 principal modes of variation. Although a particular
intensity-based deformable registration algorithm was used to produce
these results, we believe that the basic method may be adapted readily
for use with any registration method with broadly similar characteristics.

1 Introduction

Statistical modeling and analysis of anatomical shape is an active subject of
medical imaging research. Uses include image segmentation, analysis of anatom-
ical variations within populations, identification of pathological anomalies, etc.
Statistical characterization using principal component analysis (PCA) and point
distribution models is presented in [I]. Following Cootes et al., a number of au-
thors (e.g., [2],[3],[],[5]) have applied similar methods to construct statistical at-
lases of bony anatomy from CT scans of multiple individuals. The basic method
used is to identify landmark points, establish point-based correspondences be-
tween subjects, and then perform statistical analysis to study shape variations.
Typically, subject anatomical shapes are represented as surface meshes [] or
volumetric tetrahedral meshes [2],[5],[3]. Often, a template mesh representing an
anatomical structure is created, deformably registered to each subject, and mesh
vertex points are used as the corresponding landmark points. Wu et al. created a
statistical model using surface triangular meshes and a non-rigid point matching
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algorithm to register different shapes. Our atlas approach, originated by Yao et
al. [2] and subsequently also adopted by others [5][3], represents the shape us-
ing tetrahedral meshes and registers the datasets using a grayscale deformable
registration method. Bone density information is incorporated into the model
using polynomials. Some drawbacks of these methods are that a bias is intro-
duced in selecting a template shape and the sampling points on the surface are
over determined when a deformable registration method is used. Bookstein et al.
proposed an iterative ridge curve based algorithm to register each curve/shape
to the average shape [6]. However, this approach poses difficulties when applied
to volumetric data. Chui et al. presented an iterative process where multiple
sample point sets are non rigidly deformed to the emerging mean shape [7].
Chui’s method requires that each subject be separately segmented to identify
the points. Although he suggests that the method can be useful in atlas con-
struction, he does not address evolution of statistical modes. Rueckert et al. [§]
constructed an intensity atlas by using deformable 3D-3D intensity image-to-
image based registration to approximate the deformations between subjects and
a template using B-spline polynomials, and then constructed a statistical atlas
to the B-spline control points.

This paper proposes a systematic method for construction and iterative boot-
strapping of a statistical mesh atlas from multiple CT data sets. Our approach
most closely follows Yao’s. It resembles Rueckert’s by using image-to-image
intensity-based registration to determine an initial set of deformations, but dif-
fers by applying them to our mesh data structure, in the use of PCA on the mesh
to produce statistical modes, and in the use of 3D-3D atlas-to-image intensity-
based registration in iterative bootstrapping. Although the method is potentially
useful with any deformable mesh registration algorithm capable of incorporating
prior statistical information, we demonstrate it with a new method that incor-
porates whatever prior information is available. We present validation results
on a full pelvis atlas created from 110 datasets using this iterative process. We
present the algorithm and results below.

2 Method

This section describes the iterative process of creating the statistical atlas. The
statistical atlas consists of a tetrahedral mesh representing the average shape,
Bernstein polynomials representing the CT intensities and the variational modes
representing shape variations. A typical cross sectional view of the tetrahedral
mesh skeleton is shown in Figure[ll Although our current atlas includes bone den-
sity parameters, for the purpose of this paper we are restricting ourselves to shape
parameters. Our atlas construction method relies on the use of a deformable
registration method developed by Ellingsen et. al [9] that has been modified
to use prior statistical knowledge from our atlas in registering the volumet-
ric datasets. Several authors (e.g., [2],[10],[11]), have proposed similar registra-
tion methods. Generally, these methods include the following steps: 1) similarity
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(a) (b)

Fig.1. (a) A cross-sectional view of tetrahedral mesh skeleton (b) mesh fitted with
density polynomials (¢) a CT slice of a typical subject with voxelized tetrahedral mesh
(in blue) overlaid before registration (d) after registration
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Fig. 2. Statistical atlas creation process using iterative bootstrapping technique

registration, 2) statistical mode matching, and 3) local deformation. In our cur-
rent implementation, the gray scale deformable registration algorithm uses a con-
tinuously varying weighting parameter to smoothly vary from mode matching to
purely image-driven local deformation, while preserving correct mesh topology.

A flowchart describing the iterative process is shown in Figure 2] and the
algorithmic steps are shown below:

1. Select a template CT dataset Ch,qster and manually label the voxels of
the anatomy of interest, resulting in C5°97™e? Create a tetrahedral mesh

M aster from C’;";f‘fg:;”ted. We have used the meshing application developed
by [12].

2. Select ngeeq CT datasets from the population, say C;, wherei = 1,2, 3, ..nsced-
Deformably register each dataset to the template C, 45t using a 3D grayscale
deformable registration. The output of this step would be a deformation field
Dmap; and a warped subject CT, C’Z”Mped.

3. For each CT subject, create a mesh instance, M; by interpolating the defor-
mation field D; at each vertex of the master mesh M,,qster-
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4. Do a rigid registration between all the meshes and perform principal compo-
nent analysis on the registered mesh instances. This results in meanshape M
and shape variational modes Dy, refered to as Atlas; where j = 0. Any given
shape can be expressed as a linear combination of the anatomical modes of
variation

S = Mo+ X1 \iDy, (1)

5. Create a CT-like volume Ci,eqnshape from the meanshape mesh My and the
mean density polynomial.

6. For each CT subject C;, deformably register C; to Cieanshape- This reg-
istration method uses prior knowledge (meanshape M, and modes D;) to
constrain the deformation process and to increase the registration accuracy.
The resulting deformed mesh instance is M;

7. Compute a new statistical model using principal component analysis on the
mesh instances. The result of this step is a meanshape M and modes D7,
refered to as Atlasji1

8. Compare the two models, A = Compare(Atlas;, Atlasji1). Various tools
for comparing any two given models are presented in the following section.
If A > ¢, then j = j+ 1 and iterate steps 7 through 10. Stop otherwise.

With this bootstrapping process, the vertex correspondences are stabilized
and the residual variance after principal component analysis is reduced after
each iteration. Moreover, this iterative procedure removes the bias introduced in
selecting the template subject and removes the artifacts introduced by the reg-
istration algorithms, thereby stabilizing the anatomical modes of variation. Our
atlas creation process is modular and robust and we believe that the underlying
concept can be readily adapted for use with any similar deformable registration
method.

3 Results

We have created a statistical model of full pelvis anatomy from 110 CT scans of
healthy patients using this new iterative method. The tetrahedral mesh model
consists of 26875 vertices, 105767 tetrahedra, and 25026 outer surface triangles.
This mesh was created from a 512x512x256 CT volume with a voxel size of 0.9375
em?. Results from four iterations of this boot-strapping method are presented.
The zeroth iteration corresponds to basic atlas creation by registering all the
subjects to a template subject without any prior knowledge. In later iterations,
we use the statistical model from the previous iteration as a template. Figure 3]
shows surface rendered mean shape and the first three modes of pelvis anatomy
from the final iteration.

For validation purpose, we have randomly selected 20 datasets from our CT
population and excluded all these 20 datasets from the atlas creation. The goal is
to estimate these 20 left out subjects from atlases at different stages. Given a left-
out shape instance, S"“¢, align this shape instance with the mean shape using
similarity transformation. And then the shape can be estimated with deformable
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Fig. 3. Surface renderings of mean shape and first three principal modes. (a) mean
shape; (b) top: mean+3c1model, bottom: mean-301 model; (¢)top: mean+3c2mode2,
bottom: mean-3o2mode2; (d) top: mean+303 mode3, bottom: mean-3o3mode3;

mode matching step as follows: Compute the mode weights using the mean shape
(overlineM) and the modes of variation (V")

A= Yl % (Strue _ M) (2)
Use the dominant eigen modes to estimate the given shape
Sest = M 4+ X \Y; (3)

After estimating a given shape with the atlas, we define two types of metrics to
measure the error between the estimated shape and the true shape: 1) vertex to
vertex correspondence error assuming that the graphs of the meshes are similar
and 2) surface to surface distance computed by measuring distances from the
vertices of the model instance to the closest points on the subject surface [I3]. We
have performed four iterations of the boot-strapping algorithm and the residual
error plots are shown below. The residual error as estimated from the leave-
out validation tests in each iteration of the bootstrapping process is shown in
Figure @l For each iteration, we have created an atlas using 90 datasets and
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Fig. 4. Residual error plots from leave-out validation tests as a function of number
of principal modes: (a) vertex to vertex correspondence error; (b) surface to surface
distance; (c) Vertex to vertex correspondence error as a function of number of principal
components used shown for different numbers of CT subjects used to form the atlas;
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performed leave-out validation experiments using the remaining 20 datasets.
Figure[ shows that after first two iterations, the process more or less converged.
There is a significant reduction in the vertex to vertex correspondence metric
from iteration O to iteration 1 indicating that the vertex correspondences have
improved. This process seems to have converged after iteration 2. A similar trend
can be seen with surface to surface distance error metric. We have used our
surface to surface distance metric to select the number of principal components
to be used in the later experiments. Even though large number of eigen modes
result in lower residual errors, it is computationally expensive to use a large
set of principal modes. Typically, a threshold on the residual errors is used to
determine the number of eigen modes. Here, we set the surface distance threshold
to be approximately 1.5 mm and hence selected the first 15 shape modes in later
experiments.

In order to analyze the size of the population and the number of principal modes
needed to extract stable statistics, we performed the following experiment. We ran-
domly selected n meshes, where n = 20, 30, 40, ..80 and created statistical mod-
els using these datasets. This process was repeated 20 times for each value of n.
Figure Ml(c) shows the average residual vertex correspondence error in the
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Fig.5. (a) Residual surface to surface distance error from using iteration 3 as ground
truth; (b) Surface to surface distance metric between mean shapes and modes from
iterations 0-3

leave-out tests for different atlases as a function of number of modes used for
various atlas population sizes. This graph shows that around 40 to 50 datasets
are sufficient to capture the shape variations of a healthy pelvis anatomy us-
ing 15 modes. Adding more instances to this database results in a very small
improvement, less than 0.1mm, in terms of residual errors.

We analyzed the convergence in terms of the stability of the atlas. This anal-
ysis is shown in Table 1. The surface to surface distance between mean shapes
from iterations 2 and 3 is around 0.126 mm and the volume overlap between the
mean shape CT volumes is around 97%. Similarly, the average surface to surface
distance betwen the shape modes for iterations 1, 2, and 3 is around 0.6 mm.
After iteration 2, the mean shape and modes did not vary much. These values
indicate that the atlas has become stable and the bootstrapping process has
converged. As one of the reviewers mentioned, it could so happen that the pro-
cess has converged to a consistent sub-optimal solution rather than the optimal
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solution. The intuition behind the iterative process is that after every iteration,
residual errors are decreased by deforming/stretching the mesh vertices beyond
the PCA mode matching step. To verify the convergence against ground truth,
we selected mesh instances from the final iteration as our ground truth shapes.
and performed leave-out validation analysis. The bootstrapping process has con-
verged in iteration 3 as shown in Figure B(b). However, we have measured the
closest point distance between a few hand segmented meshes and the correspond-
ing atlas instances from the final iteration. The average error is around 2.0153
mm. This number is roughly comparable to the 1.5036 mm accuracy achieved
from using final iteration as ground truth. However, it is difficult to interpret
these numbers in the absence of a firm consensus segmentation since manual
segmentations are subject to random errors. We plan to do a thorough system-
atic evaluation of the algorithm against a consensus from multiple independent
segmentations.

4 Conclusions and Future Work

This paper has presented an iterative bootstrapping technique to create statisti-
cal atlases of bony anatomy from collections of CT data sets, along with various
error metrics to evaluate these atlases. Advantages of our approach include: 1)
very minimal initial segmentation is required (once to create an initial mesh) and
may be done manually or semi-automatically; 2) point correspondences are es-
tablished automatically through intensity-based registration, avoiding landmark
selection; 3) atlas bias/uncertainty is minimized through iterative refinement of
an initial atlas; 4) the method requires little or no explicit prior anatomical in-
formation, although such information may be added in a separate annotation
phase; and 5) the atlases produced are useful as prior information for assisting
3D/3D and 2D/3D (e.g., [5]) registration, as well as assisting in tomographic
reconstruction from incomplete data [5].

Although we used a particular intensity-based registration method [9] to cre-
ate this atlas, the technique can be adapted readily for use with other regis-
tration algorithms, although this must be demonstrated in actual experiments.
Our method is modular and robust, thereby enabling us to build large popula-
tion atlases fairly easily. As part of the validation framework, we have developed
various tools and strategies to compare and analyze any given number of sta-
tistical models. In this paper, we have focused on shape statistics only and we
are currently using mean density for our applications. An immediate extension
would be to incorporate density statistics in to our atlas construction pipeline
and combine the shape and density statistics to give us a better atlas.

We have demonstrated this approach by creating an atlas of the human male
pelvis from 110 subjects. Our population analysis shows that up to 40-50 sub-
jects are required to capture inherent shape variations of pelvic bone anatomy,
although additional subjects further improve the results somewhat. The leave-
out validation experiments indicate an accuracy of 1.5036 mm in approximating
any given pelvis shape with the first 15 eigen modes of the 90 dataset atlas. Our
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next experiment will be to validate the bootstrapping process with a consensus
multiple independent segmentations. In related ongoing work, we will shortly
apply our boot-strapping approach to create male and female femur atlases.
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