Extrapolation of Missing Craniofacial Skeletal Structure via Statistical Shape Models

Computer Integrated Surgery II

Spring, 2014

Robert Grupp and Hsin-Hong Chiang, under the auspices of Dr. Yoshito Otake, Professor Russell Taylor, Mr. Ryan Murphy, and Professor Mehran Armand

Introduction

- Using publicly available CT Imagery (TCIA), we have created a Statistical Shape Model (SSM) of the human skull and skin of the head
- Using the SSM, we are able to extrapolate missing anatomical craniofacial skeletal structure
- A method for synthetic patient disfigurement was also designed for future use in SSM evaluation

The Problem

- We propose that the SSM-based extrapolation may be used for surgical planning in Face Transplant Surgery
- Without a pre-trauma medical scan of the patient, true cephalometrics are unknown
- Utilize extrapolated skull of patient to a more accurate estimate of cephalometrics, for a surgical plan that yields a higher probability of post-operative success

The Solution

- SSM Construction
- Manual segmentation of the skull and skin of the template image
- Deformable volumetric registration (Diffeomorphic via SyN, ANTs); Bootstrapped via mean displacement field
- Template mesh creation and deformation to create all training meshes
- PCA on training mesh vertices
- Extrapolation
- SSM-to-Patient registration via a modified Active Shape Model search
$R(s, \boldsymbol{\theta}, \mathbf{t}, \boldsymbol{\alpha})=D_{\text {mean }}^{\text {(surface) }}\left(T\left(M_{P} ; s, \boldsymbol{\theta}, \mathbf{t}\right),\left(\boldsymbol{\mu}_{A}+\mathbf{U}_{A} \boldsymbol{\alpha}, F_{A}\right)\right)$
$\operatorname{argmin} \quad R(s, \boldsymbol{\theta}, \mathbf{t}, \boldsymbol{\alpha})$ subject to $\left|\boldsymbol{\alpha}_{i}\right| \leq 3 \sigma_{A, i}$ for $i \in\left\{1,2, \ldots, N_{A}\right\}$
$s \in \mathbb{R}, \boldsymbol{\theta}, \mathbf{t} \in \mathbb{R}^{3}, \boldsymbol{\alpha} \in \mathbb{R}^{N_{A}}$
- Approach 1: "Cut-and-paste" of the SSM estimate of the "missing region" into the patient mesh
- Approach 2: Perform regression by modeling the "known" and "unknown" regions with a multivariate Gaussian model

$$
\begin{aligned}
\widehat{\mathbf{m}}_{U} & =\boldsymbol{\mu}_{U}+\mathbf{C}_{U K} \mathbf{C}_{K K}^{-1}\left(\mathbf{m}_{K}-\boldsymbol{\mu}_{K}\right) \\
& =\boldsymbol{\mu}_{U}+\mathbf{U}_{U} \boldsymbol{\Sigma}_{U} \boldsymbol{V}_{U}^{T} \boldsymbol{V}_{K} \boldsymbol{\Sigma}_{K}^{-1} \mathbf{U}_{K}^{T}\left(\mathbf{m}_{K}-\boldsymbol{\mu}_{K}\right)
\end{aligned}
$$

- Synthetic Disfigurement
- Random displacement of mesh vertices, followed by Gaussian smoothing

Cumulative Variance Explained by the Bone SSM

(Top) Face Transplant Candidate (Middle) Patient Registered to SSM (Bottom) Heat Map of Surface Error Between SSM and Original Regions of Patient

Outcomes and Results

- Leave-one-out analysis used to evaluate SSMs
- Small surface distances about the neurocranium bias the mean surface distance metric
- Mean Surface Distance of 1.3 mm , Maximum Surface Distance of 7.6 mm (Bone)
- Extrapolation performed on known data, non-smooth transitions observed between the "known" and "unknown" regions

Future Work

- Finer CT resolution (1 mm)
- Other extrapolation approaches (e.g. Thin Plate Spline)
- Better segmentation; multiple segments
- Comparison of several Patient-to-Atlas registration techniques
- PCA applied to deformation fields
- Evaluation of incomplete disfigurement knowledge on SSM estimation
Lessons Learned
- Design everything to be processed automatically
- Good visualization tools are worth the time investment

Credits

- Robert Grupp: SSM pipeline, Extrapolation, Visualization
- Hsin-Hong Chiang: Synthetic Disfiguration, ANTs Bootstrapping

Publications

- Plan to submit to the IEEE Medical Imaging Conference (MIC) and the Workshop on Modeling and Monitoring of Computer Assisted Interventions (M2CAI)

Support by and Acknowledgements

- Core NSF CISST/ERC; NIH
- Imagery from The Cancer Image Archive and Dr. Chad Gordon
- We are extremely grateful for the support of our mentors whose zeal for this topic was of great inspiration to us.
- Computing recourses from BIGSS, JHU APL, LCSR, JHU Computer Science

