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Introduction 
•  Using publicly available CT Imagery (TCIA), we have 

created a Statistical Shape Model (SSM) of the human 
skull and skin of the head 

•  Using the SSM, we are able to extrapolate missing 
anatomical craniofacial skeletal structure 

•  A method for synthetic patient disfigurement was also 
designed for future use in SSM evaluation 

Outcomes and Results 
•  Leave-one-out analysis used to evaluate SSMs 
•  Small surface distances about the neurocranium bias 

the mean surface distance metric 
•  Mean Surface Distance of 1.3 mm, Maximum Surface 

Distance of 7.6 mm (Bone) 
•  Extrapolation performed on known data, non-smooth 

transitions observed between the “known” and 
“unknown” regions 

The Problem 
•  We propose that the SSM-based extrapolation may be used for 

surgical planning in Face Transplant Surgery 

•  Without a pre-trauma medical scan of the patient, true 
cephalometrics are unknown 

•  Utilize extrapolated skull of patient to a more accurate estimate 
of cephalometrics, for a surgical plan that yields a higher 
probability of post-operative success 
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(Top) Face Transplant Candidate (Middle) 
Patient Registered to SSM (Bottom) Heat 
Map of Surface Error Between SSM and 

Original Regions of Patient 

The Solution 
•  SSM Construction 

•  Manual segmentation of the skull and skin of the template 
image 

•  Deformable volumetric registration (Diffeomorphic via SyN, 
ANTs); Bootstrapped via mean displacement field 

•  Template mesh creation and deformation to create all training 
meshes 

•   PCA on training mesh vertices 

•  Extrapolation 

•  SSM-to-Patient registration via a modified Active Shape 
Model search 

 

•  Approach 1: “Cut-and-paste” of the SSM estimate of the 
“missing region” into the patient mesh 

•  Approach 2: Perform regression by modeling the “known” and 
“unknown” regions with a multivariate Gaussian model 

•  Synthetic Disfigurement 

•  Random displacement of mesh vertices, followed by 
Gaussian smoothing 

Publications 
•  Plan to submit to the IEEE Medical Imaging Conference (MIC) 

and the Workshop on Modeling and Monitoring of Computer 
Assisted Interventions (M2CAI) 

Credits 
•  Robert Grupp: SSM pipeline, Extrapolation, Visualization 

•  Hsin-Hong Chiang: Synthetic Disfiguration, ANTs Bootstrapping 
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Lessons Learned 
•  Design everything to be processed automatically 

•  Good visualization tools are worth the time investment 

Future Work 
•  Finer CT resolution (1 mm) 
•  Other extrapolation approaches (e.g. Thin Plate Spline) 
•  Better segmentation; multiple segments 
•  Comparison of several Patient-to-Atlas registration 

techniques 
•  PCA applied to deformation fields 
•  Evaluation of incomplete disfigurement knowledge on 

SSM estimation 
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Synthetic Removal of Structure and 
Extrapolation  

A Synthetic Disfigurement 
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After getting M
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, we need to compute the co-variance matrix and eigen-decomposition for
variation modes. M
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2 R3NV ⇥3NV . Mesh with 60, 000 vertices, 32-bit floating point
precision, ⇡ 121 GB. It is impossible to compute the co-variance matrix directly, not to
mention egein-decomposition.
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Cumulative Variance Explained 
by the Bone SSM 


