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Abstract

We show that surface reconstruction from oriented points can be cast as a spatial Poisson problem. This Poisson

formulation considers all the points at once, without resorting to heuristic spatial partitioning or blending, and

is therefore highly resilient to data noise. Unlike radial basis function schemes, our Poisson approach allows a

hierarchy of locally supported basis functions, and therefore the solution reduces to a well conditioned sparse

linear system. We describe a spatially adaptive multiscale algorithm whose time and space complexities are pro-

portional to the size of the reconstructed model. Experimenting with publicly available scan data, we demonstrate

reconstruction of surfaces with greater detail than previously achievable.

1. Introduction

Reconstructing 3D surfaces from point samples is a well
studied problem in computer graphics. It allows fitting of
scanned data, filling of surface holes, and remeshing of ex-
isting models. We provide a novel approach that expresses
surface reconstruction as the solution to a Poisson equation.

Like much previous work (Section 2), we approach the
problem of surface reconstruction using an implicit function
framework. Specifically, like [Kaz05] we compute a 3D in-

dicator function χ (defined as 1 at points inside the model,
and 0 at points outside), and then obtain the reconstructed
surface by extracting an appropriate isosurface.

Our key insight is that there is an integral relationship be-
tween oriented points sampled from the surface of a model
and the indicator function of the model. Specifically, the gra-
dient of the indicator function is a vector field that is zero
almost everywhere (since the indicator function is constant
almost everywhere), except at points near the surface, where
it is equal to the inward surface normal. Thus, the oriented
point samples can be viewed as samples of the gradient of
the model’s indicator function (Figure 1).

The problem of computing the indicator function thus re-
duces to inverting the gradient operator, i.e. finding the scalar
function χ whose gradient best approximates a vector field
V⃗ defined by the samples, i.e. minχ ∥∇χ − V⃗∥. If we apply
the divergence operator, this variational problem transforms
into a standard Poisson problem: compute the scalar func-
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Figure 1: Intuitive illustration of Poisson reconstruction in 2D.

tion χ whose Laplacian (divergence of gradient) equals the
divergence of the vector field V⃗ ,

∆χ ≡ ∇ ·∇χ = ∇ ·V⃗ .

We will make these definitions precise in Sections 3 and 4.

Formulating surface reconstruction as a Poisson problem
offers a number of advantages. Many implicit surface fitting
methods segment the data into regions for local fitting, and
further combine these local approximations using blending
functions. In contrast, Poisson reconstruction is a global so-
lution that considers all the data at once, without resorting
to heuristic partitioning or blending. Thus, like radial basis
function (RBF) approaches, Poisson reconstruction creates
very smooth surfaces that robustly approximate noisy data.
But, whereas ideal RBFs are globally supported and non-
decaying, the Poisson problem admits a hierarchy of locally

supported functions, and therefore its solution reduces to a
well-conditioned sparse linear system.
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Moreover, in many implicit fitting schemes, the value
of the implicit function is constrained only near the sam-
ple points, and consequently the reconstruction may con-
tain spurious surface sheets away from these samples. Typ-
ically this problem is attenuated by introducing auxiliary
“off-surface” points (e.g. [CBC∗01, OBA∗03]). With Pois-
son surface reconstruction, such surface sheets seldom arise
because the gradient of the implicit function is constrained at
all spatial points. In particular it is constrained to zero away
from the samples.

Poisson systems are well known for their resilience in the
presence of imperfect data. For instance, “gradient domain”
manipulation algorithms (e.g. [FLW02]) intentionally mod-
ify the gradient data such that it no longer corresponds to any
real potential field, and rely on a Poisson system to recover
the globally best-fitting model.

There has been broad interdisciplinary research on solv-
ing Poisson problems and many efficient and robust methods
have been developed. One particular aspect of our problem
instance is that an accurate solution to the Poisson equation
is only necessary near the reconstructed surface. This allows
us to leverage adaptive Poisson solvers to develop a recon-
struction algorithm whose spatial and temporal complexities
are proportional to the size of the reconstructed surface.

2. Related Work

Surface reconstruction The reconstruction of surfaces
from oriented points has a number of difficulties in prac-
tice. The point sampling is often nonuniform. The positions
and normals are generally noisy due to sampling inaccuracy
and scan misregistration. And, accessibility constraints dur-
ing scanning may leave some surface regions devoid of data.
Given these challenges, reconstruction methods attempt to
infer the topology of the unknown surface, accurately fit (but
not overfit) the noisy data, and fill holes reasonably.

Several approaches are based on combinatorial structures,
such as Delaunay triangulations (e.g. [Boi84, KSO04]), al-
pha shapes [EM94, BBX95, BMR∗99]), or Voronoi dia-
grams [ABK98, ACK01]. These schemes typically create a
triangle mesh that interpolates all or a most of the points.
In the presence of noisy data, the resulting surface is often
jagged, and is therefore smoothed (e.g. [KSO04]) or refit to
the points (e.g. [BBX95]) in subsequent processing.

Other schemes directly reconstruct an approximating sur-
face, typically represented in implicit form. We can broadly
classify these as either global or local approaches.

Global fitting methods commonly define the implicit
function as the sum of radial basis functions (RBFs) centered
at the points (e.g. [Mur91, CBC∗01, TO02]). However, the
ideal RBFs (polyharmonics) are globally supported and non-
decaying, so the solution matrix is dense and ill-conditioned.
Practical solutions on large datasets involve adaptive RBF
reduction and the fast multipole method [CBC∗01].

Local fitting methods consider subsets of nearby points at
a time. A simple scheme is to estimate tangent planes and
define the implicit function as the signed distance to the tan-
gent plane of the closest point [HDD∗92]. Signed distance
can also be accumulated into a volumetric grid [CL96]. For
function continuity, the influence of several nearby points
can be blended together, for instance using moving least
squares [ABCO∗01,SOS04]. A different approach is to form
point neighborhoods by adaptively subdividing space, for
example with an adaptive octree. Blending is possible over
an octree structure using a multilevel partition of unity, and
the type of local implicit patch within each octree node can
be selected heuristically [OBA∗03].

Our Poisson reconstruction combines benefits of both
global and local fitting schemes. It is global and therefore
does not involve heuristic decisions for forming local neigh-
borhoods, selecting surface patch types, and choosing blend
weights. Yet, the basis functions are associated with the am-
bient space rather than the data points, are locally supported,
and have a simple hierarchical structure that results in a
sparse, well-conditioned system.

Our approach of solving an indicator function is sim-
ilar to the Fourier-based reconstruction scheme of Kazh-
dan [Kaz05]. In fact, we show in Appendix A that our basic
Poisson formulation is mathematically equivalent. Indeed,
the Fast Fourier Transform (FFT) is a common technique
for solving dense, periodic Poisson systems. However, the
FFT requires O(r3 logr) time and O(r3) space where r is
the 3D grid resolution, quickly becoming prohibitive for fine
resolutions. In contrast, the Poisson system allows adaptive
discretization, and thus yields a scalable solution.

Poisson problems The Poisson equation arises in numer-
ous applications areas. For instance, in computer graph-
ics it is used for tone mapping of high dynamic range im-
ages [FLW02], seamless editing of image regions [PGB03],
fluid mechanics [LGF04], and mesh editing [YZX∗04].
Multigrid Poisson solutions have even been adapted for effi-
cient GPU computation [BFGS03, GWL∗03].

The Poisson equation is also used in heat transfer and
diffusion problems. Interestingly, Davis et al [DMGL02]
use diffusion to fill holes in reconstructed surfaces. Given
boundary conditions in the form of a clamped signed dis-
tance function d, their diffusion approach essentially solves
the homogeneous Poisson equation ∆d = 0 to create an im-
plicit surface spanning the boundaries. They use a local iter-
ative solution rather than a global multiscale Poisson system.

Nehab et al [NRDR05] use a Poisson system to fit a 2.5D
height field to sampled positions and normals. Their ap-
proach fits a given parametric surface and is well-suited to
the reconstruction of surfaces from individual scans. How-
ever, in the case that the samples are obtained from the union
of multiple scans, their approach cannot be directly applied
to obtain a connected, watertight surface.
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3. Our Poisson reconstruction approach

The input data S is a set of samples s∈ S, each consisting of a
point s.p and an inward-facing normal s.N⃗, assumed to lie on
or near the surface ∂M of an unknown model M. Our goal is
to reconstruct a watertight, triangulated approximation to the
surface by approximating the indicator function of the model
and extracting the isosurface, as illustrated in Figure 2.

The key challenge is to accurately compute the indicator
function from the samples. In this section, we derive a rela-
tionship between the gradient of the indicator function and
an integral of the surface normal field. We then approximate
this surface integral by a summation over the given oriented
point samples. Finally, we reconstruct the indicator function
from this gradient field as a Poisson problem.

Defining the gradient field Because the indicator function
is a piecewise constant function, explicit computation of its
gradient field would result in a vector field with unbounded
values at the surface boundary. To avoid this, we convolve
the indicator function with a smoothing filter and consider
the gradient field of the smoothed function. The following
lemma formalizes the relationship between the gradient of
the smoothed indicator function and the surface normal field.

Lemma: Given a solid M with boundary ∂M, let χM de-
note the indicator function of M, N⃗∂M(p) be the inward
surface normal at p ∈ ∂M, F̃(q) be a smoothing filter, and
F̃p(q) = F̃(q−p) its translation to the point p. The gradient
of the smoothed indicator function is equal to the vector field
obtained by smoothing the surface normal field:

∇
(
χM ∗ F̃

)
(q0) =

∫

∂M
F̃p(q0)N⃗∂M(p)d p. (1)

Proof: To prove this, we show equality for each of the com-
ponents of the vector field. Computing the partial derivative
of the smoothed indicator function with respect to x, we get:

∂

∂x

∣∣∣∣
q0

(
χM ∗ F̃

)
=

∂

∂x

∣∣∣∣
q=q0

∫

M
F̃(q− p)d p

=
∫

M

(
−

∂

∂x
F̃(q0 − p)

)
d p

= −
∫

M
∇ ·

(
F̃(q0 − p),0,0

)
d p

=
∫

∂M

〈(
F̃p(q0),0,0

)
, N⃗∂M(p)

〉
d p.

(The first equality follows from the fact that χM is equal to
zero outside of M and one inside. The second follows from
the fact that (∂/∂q)F̃(q− p) = −(∂/∂ p)F̃(q− p). The last
follows from the Divergence Theorem.)

A similar argument shows that the y-, and z-components
of the two sides are equal, thereby completing the proof. !

Approximating the gradient field Of course, we cannot
evaluate the surface integral since we do not yet know the

Figure 2: Points from scans of the “Armadillo Man” model (left),

our Poisson surface reconstruction (right), and a visualization of the

indicator function (middle) along a plane through the 3D volume.

surface geometry. However, the input set of oriented points
provides precisely enough information to approximate the
integral with a discrete summation. Specifically, using the
point set S to partition ∂M into distinct patches Ps ⊂ ∂M,
we can approximate the integral over a patch Ps by the value
at point sample s.p, scaled by the area of the patch:

∇(χM ∗ F̃)(q) = ∑
s∈S

∫

Ps

F̃p(q)N⃗∂M(p)d p

≈ ∑
s∈S

|Ps| F̃s.p(q) s.N⃗ ≡ V⃗ (q).
(2)

It should be noted that though Equation 1 is true for any
smoothing filter F̃ , in practice, care must be taken in choos-
ing the filter. In particular, we would like the filter to satisfy
two conditions. On the one hand, it should be sufficiently
narrow so that we do not over-smooth the data. And on the
other hand, it should be wide enough so that the integral over
Ps is well approximated by the value at s.p scaled by the
patch area. A good choice of filter that balances these two
requirements is a Gaussian whose variance is on the order of
the sampling resolution.

Solving the Poisson problem Having formed a vector field
V⃗ , we want to solve for the function χ̃ such that ∇χ̃ = V⃗ .
However, V⃗ is generally not integrable (i.e. it is not curl-
free), so an exact solution does not generally exist. To find
the best least-squares approximate solution, we apply the di-
vergence operator to form the Poisson equation

∆χ̃ = ∇ ·V⃗ .

In the next section, we describe our implementation of
these steps in more detail.

4. Implementation

We first present our reconstruction algorithm under the as-
sumption that the point samples are uniformly distributed
over the model surface. We define a space of functions with
high resolution near the surface of the model and coarser
resolution away from it, express the vector field V⃗ as a linear
sum of functions in this space, set up and solve the Poisson
equation, and extract an isosurface of the resulting indicator
function. We then extend our algorithm to address the case
of non-uniformly sampled points.
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4.1. Problem Discretization

First, we must choose the space of functions in which to dis-
cretize the problem. The most straightforward approach is
to start with a regular 3D grid [Kaz05], but such a uniform
structure becomes impractical for fine-detail reconstruction,
since the dimension of the space is cubic in the resolution
while the number of surface triangles grows quadratically.

Fortunately, an accurate representation of the implicit
function is only necessary near the reconstructed surface.
This motivates the use of an adaptive octree both to repre-
sent the implicit function and to solve the Poisson system
(e.g. [GKS02,LGF04]). Specifically, we use the positions of
the sample points to define an octree O and associate a func-
tion Fo to each node o ∈ O of the tree, choosing the tree and
the functions so that the following conditions are satisfied:

1. The vector field V⃗ can be precisely and efficiently repre-
sented as the linear sum of the Fo.

2. The matrix representation of the Poisson equation, ex-
pressed in terms of the Fo can be solved efficiently.

3. A representation of the indicator function as the sum of
the Fo can be precisely and efficiently evaluated near the
surface of the model.

Defining the function space Given a set of point samples
S and a maximum tree depth D, we define the octree O to be
the minimal octree with the property that every point sample
falls into a leaf node at depth D.

Next, we define a space of functions obtained as the span
of translates and scales of a fixed, unit-integral, base func-
tion F : R3 → R. For every node o ∈ O , we set Fo to be the
unit-integral “node function” centered about the node o and
stretched by the size of o:

Fo(q) ≡ F

(
q−o.c

o.w

)
1

o.w3 .

where o.c and o.w are the center and width of node o.

This space of functions FO,F ≡ Span{Fo} has a multires-
olution structure similar to that of traditional wavelet repre-
sentations. Finer nodes are associated with higher-frequency
functions, and the function representation becomes more
precise as we near the surface.

Selecting a base function In selecting a base function F ,
our goal is to choose a function so that the vector field V⃗ ,
defined in Equation 2, can be precisely and efficiently repre-
sented as the linear sum of the node functions {Fo}.

If we were to replace the position of each sample with the
center of the leaf node containing it, the vector field V⃗ could
be efficiently expressed as the linear sum of {Fo} by setting:

F(q) = F̃
( q

2D

)
.

This way, each sample would contribute a single term (the
normal vector) to the coefficient corresponding to its leaf’s

node function. Since the sampling width is 2−D and the sam-
ples all fall into leaf nodes of depth D, the error arising from
the clamping can never be too big (at most, on the order of
half the sampling width). In the next section, we show how
the error can be further reduced by using trilinear interpola-
tion to allow for sub-node precision.

Finally, since a maximum tree depth of D corresponds to a
sampling width of 2−D, the smoothing filter should approxi-
mate a Gaussian with variance on the order of 2−D. Thus, F

should approximate a Gaussian with unit-variance.

For efficiency, we approximate the unit-variance Gaussian
by a compactly supported function so that (1) the resulting
Divergence and Laplacian operators are sparse and (2) the
evaluation of a function expressed as the linear sum of Fo at
some point q only requires summing over the nodes o ∈ O

that are close to q. Thus, we set F to be the n-th convolution
of a box filter with itself resulting in the base function F :

F(x,y,z)≡ (B(x)B(y)B(z))∗n with B(t)=

{
1 |t| < 0.5
0 otherwise

Note that as n is increased, F more closely approximates
a Gaussian and its support grows larger; in our implemen-
tation we use a piecewise quadratic approximation with
n = 3. Therefore, the function F is supported on the domain
[-1.5,1.5]3 and, for the basis function of any octree node,
there are at most 53-1 = 124 other nodes at the same depth
whose functions overlap with it.

4.2. Vector Field Definition

To allow for sub-node precision, we avoid clamping a sam-
ple’s position to the center of the containing leaf node and
instead use trilinear interpolation to distribute the sample
across the eight nearest nodes. Thus, we define our approxi-
mation to the gradient field of the indicator function as:

V⃗ (q) ≡ ∑
s∈S

∑
o∈NgbrD(s)

αo,sFo(q)s.N⃗ (3)

where NgbrD(s) are the eight depth-D nodes closest to s.p
and {αo,s} are the trilinear interpolation weights. (If the
neighbors are not in the tree, we refine it to include them.)

Since the samples are uniform, we can assume that the
area of a patch Ps is constant and V⃗ is a good approxima-
tion, up to a multiplicative constant, of the gradient of the
smoothed indicator function. We will show that the choice
of multiplicative constant does not affect the reconstruction.

4.3. Poisson Solution

Having defined the vector field V⃗ , we would like to solve for
the function χ̃ ∈ FO,F such that the gradient of χ̃ is closest
to V⃗ , i.e. a solution to the Poisson equation ∆χ̃ = ∇ ·V⃗ .

One challenge of solving for χ̃ is that though χ̃ and the
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coordinate functions of V⃗ are in the space FO,F it is not
necessarily the case that the functions ∆χ̃ and ∇ ·V⃗ are.

To address this issue, we need to solve for the function χ̃
such that the projection of ∆χ̃ onto the space FO,F is closest
to the projection of ∇ · V⃗ . Since, in general, the functions
Fo do not form an orthonormal basis, solving this problem
directly is expensive. However, we can simplify the problem
by solving for the function χ̃ minimizing:

∑
o∈O

∥∥∥⟨∆χ̃ −∇ ·V⃗ ,Fo⟩
∥∥∥

2
= ∑

o∈O

∥∥∥⟨∆χ̃,Fo⟩−⟨∇ ·V⃗ ,Fo⟩
∥∥∥

2
.

Thus given the |O|-dimensional vector v whose o-th coordi-
nate is vo = ⟨∇ · V⃗ ,Fo⟩, the goal is to solve for the function
χ̃ such that the vector obtained by projecting the Laplacian
of χ̃ onto each of the Fo is as close to v as possible.

To express this in matrix form, let χ̃ = ∑o xoFo, so that
we are solving for the vector x ∈R|O|. Then, let us define the
|O|× |O| matrix L such that Lx returns the dot product of the
Laplacian with each of the Fo. Specifically, for all o,o′ ∈ O ,
the (o,o′)-th entry of L is set to:

Lo,o′ ≡

〈
∂ 2Fo

∂x2 ,Fo′

〉
+

〈
∂ 2Fo

∂y2 ,Fo′

〉
+

〈
∂ 2Fo

∂ z2 ,Fo′

〉
.

Thus, solving for χ̃ amounts to finding

min
x∈R|O|

∥Lx− v∥2.

Note that the matrix L is sparse and symmetric. (Sparse
because the Fo are compactly supported, and symmetric be-
cause

∫
f ′′g = −

∫
f ′g′.) Furthermore, there is an inherent

multiresolution structure on FO,F , so we use an approach
similar to the multigrid approach in [GKS02], solving the
restriction Ld of L to the space spanned by the depth d func-
tions (using a conjugate gradient solver) and projecting the
fixed-depth solution back onto FO,F to update the residual.

Addressing memory concerns In practice, as the depth in-
creases, the matrix Ld becomes larger and it may not be prac-
tical to store it in memory. Although the number of entries in
a column of Ld is bounded by a constant, the constant value
can be large. For example, even using a piecewise quadratic
base function F , we end up with as many as 125 non-zero
entries in a column, resulting in a memory requirement that
is 125 times larger than the size of the octree.

To address this issue, we augment our solver with a block
Gauss-Seidel solver. That is, we decompose the d-th dimen-
sional space into overlapping regions and solve the restric-
tion of Ld to these different regions, projecting the local so-
lutions back into the d-dimensional space and updating the
residuals. By choosing the number of regions to be a func-
tion of the depth d, we ensure that the size of the matrix used
by the solver never exceeds a desired memory threshold.

4.4. Isosurface Extraction

In order to obtain a reconstructed surface ∂M̃, it is necessary
to first select an isovalue and then extract the corresponding
isosurface from the computed indicator function.

We choose the isovalue so that the extracted surface
closely approximates the positions of the input samples. We
do this by evaluating χ̃ at the sample positions and use the
average of the values for isosurface extraction:

∂M̃ ≡ {q ∈ R
3 ∣∣ χ̃(q) = γ} with γ =

1
|S| ∑

s∈S

χ̃(s.p).

This choice of isovalue has the property that scaling χ̃ does
not change the isosurface. Thus, knowing the vector field V⃗

up to a multiplicative constant provides sufficient informa-
tion for reconstructing the surface.

To extract the isosurface from the indicator function, we
use a method similar to previous adaptations of the March-
ing Cubes [LC87] to octree representations (e.g. [WG92,
SFYC96, WKE99]). However, due to the nonconforming
properties of our tree, we modify the reconstruction ap-
proach slightly, defining the positions of zero-crossings
along an edge in terms of the zero-crossings computed by
the finest level nodes adjacent to the edge. In the case that an
edge of a leaf node has more than one zero-crossing associ-
ated to it, the node is subdivided. As in previous approaches,
we avoid cracks arising when coarser nodes share a face with
finer ones by projecting the isocurve segments from the faces
of finer nodes onto the face of the coarser one.

4.5. Non-uniform Samples

We now extend our method to the case of non-uniformly dis-
tributed point samples. As in [Kaz05], our approach is to es-
timate the local sampling density, and scale the contribution
of each point accordingly. However, rather than simply scal-
ing the magnitude of a fixed-width kernel associated with
each point, we additionally adapt the kernel width. This re-
sults in a reconstruction that maintains sharp features in ar-
eas of dense sampling and provides a smooth fit in sparsely
sampled regions.

Estimating local sampling density Following the ap-
proach of [Kaz05], we implement the density computation
using a kernel density estimator [Par62]. The approach is to
estimate the number of points in a neighborhood of a sam-
ple by “splatting” the samples into a 3D grid, convolving the
“splatting” function with a smoothing filter, and evaluating
the convolution at each of the sample points.

We implement the convolution in a manner similar to
Equation 3. Given a depth D̂ ≤ D we set the density esti-
mator to be the sum of node functions at depth D̂:

WD̂(q) ≡ ∑
s∈S

∑
o∈NgbrD̂(s)

αo,sFo(q).
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Since octree nodes at lower resolution are associated with
functions that approximate Gaussians of larger width, the
parameter D̂ provides away for specifying the locality of the
density estimation, with smaller values of D̂ giving sampling
density estimates over larger regions.

Computing the vector field Using the density estimator,
we modify the summation in Equation 3 so that each sam-
ple’s contribution is proportional to its associated area on the
surface. Specifically, using the fact that the area is inversely
proportional to sampling density, we set:

V⃗ (q) ≡ ∑
s∈S

1
WD̂(s.p) ∑

o∈NgbrD(s)

αo,sFo(q).

However, adapting only the magnitudes of the sample
contributions results in poor noise filtering in sparsely sam-
pled regions as demonstrated later in Figure 7. Therefore,
we additionally adapt the width of the smoothing filter F̃ to
the local sampling density. Adapting the filter width lets us
retain fine detail in regions of dense sampling, while smooth-
ing out noise in regions of sparse sampling.

Using the fact that node functions at smaller depths corre-
spond to wider smoothing filters, we define

V⃗ (q) ≡ ∑
s∈S

1
WD̂(s.p) ∑

o∈NgbrDepth(s.p)(s)

αo,sFo(q).

In this definition, Depth(s.p) represents the desired depth of
a sample point s ∈ S. It is defined by computing the average
sampling density W over all of the samples and setting:

Depth(s.p) ≡ min
(
D,D+ log4(WD̂(s.p)/W )

)

so that the width of the smoothing filter with which s con-
tributes to V⃗ is proportional to the radius of its associated
surface patch Ps.

Selecting an isovalue Finally, we modify the surface ex-
traction step by selecting an isovalue which is the weighted
average of the values of χ̃ at the sample positions:

∂M̃ ≡ {q ∈ R
3 ∣∣ χ̃(q) = γ} with γ =

∑ 1
WD̂(s.p) χ̃(s.p)

∑ 1
WD̂(s.p)

.

5. Results

To evaluate our method we conducted a series of experi-
ments. Our goal was to address three separate questions:
How well does the algorithm reconstruct surfaces? How
does it compare to other reconstruction methods? And, what
are its performance characteristics?

Much practical motivation for surface reconstruction de-
rives from 3D scanning, so we have focused our experiments
on the reconstruction of 3D models from real-world data.

5.1. Resolution

We first consider the effects of the maximum octree depth
on the reconstructed surface.

Figure 3 shows our reconstruction results for the “dragon”
model at octree depths 6, 8, and 10. (In the context of recon-
struction on a regular grid, this would correspond to reso-
lutions of 643, 2563, and 10243, respectively.) As the tree
depth is increased, higher-resolution functions are used to fit
the indicator function, and consequently the reconstructions
capture finer detail. For example, the scales of the dragon,
which are too fine to be captured at the coarsest resolution
begin appearing and become more sharply pronounced as
the octree depth is increased.

Figure 3: Reconstructions of the dragon model at octree depths 6

(top), 8 (middle), and 10 (bottom).

5.2. Comparison to Previous Work

We compare the results of our reconstruction algorithm
to the results obtained using Power Crust [ACK01], Ro-
bust Cocone [DG04], Fast Radial Basis Functions (Fas-
tRBF) [CBC∗01], Multi-Level Partition of Unity Implicits
(MPU) [OBA∗03], Surface Reconstruction from Unorga-
nized Points [HDD∗92], Volumetric Range Image Process-
ing (VRIP) [CL96], and the FFT-based method of [Kaz05].
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Figure 4: Reconstructions of the Stanford bunny using Power

Crust (a), Robust Cocone (b), Fast RBF (c), MPU (d), Hoppe et al.’s
reconstruction (e), VRIP (f), FFT-based reconstruction (g), and our

Poisson reconstruction (h).

Our initial test case is the Stanford “bunny” raw dataset of
362,000 points assembled from ten range images. The data
was processed to fit the input format of each algorithm. For
example, when running our method, we estimated a sample’s
normal from the positions of the neighbors; Running VRIP,
we used the registered scans as input, maintaining the regu-
larity of the sampling, and providing the confidence values.

Figure 4 compares the different reconstructions. Since the
scanned data contains noise, interpolatory methods such as
Power Crust (a) and Robust Cocone (b) generate surfaces
that are themselves noisy. Methods such as Fast RBF (c) and
MPU (d), which only constrain the implicit function near

the sample points, result in reconstructions with spurious
surface sheets. Non-interpolatory methods, such as the ap-
proach of [HDD∗92] (e), can smooth out the noise, although
often at the cost of model detail. VRIP (f), the FFT-based
approach (g), and the Poisson approach (h) all accurately re-
construct the surface of the bunny, even in the presence of
noise, and we compare these three methods in more detail.

Figure 5: Reconstructions of a fragment of the Forma Urbis Ro-

mae tablet using VRIP (left) and the Poisson solution (right).

Comparison to VRIP A challenge in surface reconstruc-
tion is the recovery of sharp features. We compared our
method to VRIP by evaluating the reconstruction of sam-
ple points obtained from fragment 661a of the Forma Ur-
bis Romae (30 scans, 2,470,000 points) and the “Happy
Buddha” model (48 scans, 2,468,000 points), shown in Fig-
ures 5 and 6. In both cases, we find that VRIP exhibits a
“lipping” phenomenon at sharp creases. This is due to the
fact that VRIP’s distance function is grown perpendicular to
the view direction, not the surface normal. In contrast, our
Poisson reconstruction, which is independent of view direc-
tion, accurately reconstructs the corner of the fragment and
the sharp creases in the Buddha’s cloak.

Comparison to the FFT-based approach As Fig-
ure 4 demonstrates, our Poisson reconstruction (h) closely
matches the one obtained with the FFT-based method (g).
Since our method provides an adaptive solution to the same
problem, the similarity is a confirmation that in adapting
the octree to the data, our method does not discard salient,
high-frequency information. We have also confirmed that
our Poisson method maintains the high noise resilience al-
ready demonstrated in the results of [Kaz05].

Though theoretically equivalent in the context of uni-
formly sampled data, our use of adaptive-width filters (Sec-
tion 4.5) gives better reconstructions than the FFT-based
method on the non-uniform data commonly encountered in
3D scanning. For example, let us consider the region around
the left eye of the “David” model, shown in Figure 7(a). The
area above the eyelid (highlighted in red) is sparsely sam-
pled due to the fact that it is in a concave region and is seen
only by a few scans. Furthermore, the scans that do sample
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Figure 6: Reconstructions of the “Happy Buddha” model using

VRIP (left) and Poisson reconstruction (right).

the region tend to sample at near-grazing angles resulting
in noisy position and normal estimates. Consequently, fixed-
resolution reconstruction schemes such as the FFT-based ap-
proach (b) introduce high-frequency noise in these regions.
In contrast, our method (c), which adapts both the scale and
the variance of the samples’ contributions, fits a smoother re-
construction to these regions, without sacrificing fidelity in
areas of dense sampling (e.g. the region highlighted in blue).

Limitation of our approach A limitation of our method
is that it does not incorporate information associated with
the acquisition modality. Figure 6 shows an example of this
in the reconstruction at the base of the Buddha. Since there
are no samples between the two feet, our method (right)
connects the two regions. In contrast, the ability to use sec-
ondary information such as line of sight allows VRIP (left)
to perform the space carving necessary to disconnect the two
feet, resulting in a more accurate reconstruction.

5.3. Performance and Scalability

Table 1 summarizes the temporal and spatial efficiency of
our algorithm on the “dragon” model, and indicates that the

Figure 7: Reconstruction of samples from the region around the

left eye of the David model (a), using the fixed-resolution FFT ap-

proach (b), and Poisson reconstruction (c).

memory and time requirements of our algorithm are roughly
quadratic in the resolution. Thus, as we increase the oc-
tree depth by one, we find that the running time, the mem-
ory overhead, and the number of output triangles increases
roughly by a factor of four.

Tree Depth Time Peak Memory # of Tris.
7 6 19 21,000
8 26 75 90,244
9 126 155 374,868

10 633 699 1,516,806

Table 1: The running time (in seconds), the peak memory usage (in

megabytes), and the number of triangles in the reconstructed model

for the different depth reconstructions of the dragon model. A kernel

depth of 6 was used for density estimation.

The running time and memory performance of our method
in reconstructing the Stanford Bunny at a depth of 9 is com-
pared to the performance of related methods in Table 2. Al-
though in this experiment, our method is neither fastest nor
most memory efficient, its quadratic nature makes it scalable
to higher resolution reconstructions. As an example, Fig-
ure 8 shows a reconstruction of the head of Michelangelo’s
David at a depth of 11 from a set of 215,613,477 samples.
The reconstruction was computed in 1.9 hours and 5.2GB
of RAM, generating a 16,328,329 triangle model. Trying
to compute an equivalent reconstruction with methods such
as the FFT approach would require constructing two voxel
grids at a resolution of 20483 and would require in excess of
100GB of memory.
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Figure 8: Several images of the reconstruction of the head of Michelangelo’s David, obtained running our algorithm with a maximum tree

depth of 11. The ability to reconstruct the head at such a high resolution allows us to make out the fine features in the model such as the inset

iris, the drill marks in the hair, the chip on the eyelid, and the creases around the nose and mouth.

Method Time Peak Memory # of Tris.
Power Crust 380 2653 554,332
Robust Cocone 892 544 272,662
FastRBF 4919 796 1,798,154
MPU 28 260 925,240
Hoppe et al 1992 70 330 950,562
VRIP 86 186 1,038,055
FFT 125 1684 910,320
Poisson 263 310 911,390

Table 2: The running time (in seconds), the peak memory usage

(in megabytes), and the number of triangles in the reconstructed

surface of the Stanford Bunny generated by the different methods.

6. Conclusion

We have shown that surface reconstruction can be expressed
as a Poisson problem, which seeks the indicator function that
best agrees with a set of noisy, non-uniform observations,
and we have demonstrated that this approach can robustly
recover fine detail from noisy real-world scans.

There are several avenues for future work:
• Extend the approach to exploit sample confidence values.

• Incorporate line-of-sight information from the scanning
process into the solution process.

• Extend the system to allow out-of-core processing for
huge datasets.
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Appendix A:

The solution to surface reconstruction described in this paper
approaches the problem in a manner similar to the solution
of [Kaz05] in that the reconstructed surface is obtained by
first computing the indicator function and then extracting the
appropriate isosurface.

While the two methods seem to approach the problem
of computing the indicator function in different manners
( [Kaz05] uses Stokes’ Theorem to define the Fourier co-
efficients of the indicator function while we use the Poisson
equation), the two methods are in fact equivalent.

To show this, we use the fact that the Poisson equation
∆u = f where f is periodic can be solved using the Fourier
transform. The Fourier series expansion is −|ζ |2û(ζ ) =
f̂ (ζ ), or equivalently û(ζ ) = −1

|ζ |2 f̂ (ζ ).

Thus, our Poisson equation ∆χ = ∇ · V⃗ can be solved us-

ing χ̂ = −1
|ζ |2 ∇̂ ·V⃗ . With the well known identity f̂ ′ = −iζ f̂

and its generalization ∇̂ ·V⃗ = −iζ · ˆ⃗V , we get χ̂ = i
|ζ |2 ζ · ˆ⃗V ,

which is identical to [Kaz05].
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