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This is a summary of the paper An Introduction to the Kalman Filter by Welch and Bishop.

The Kalman Filter

The Kalman Filter is a recursive algorithm that provides an efficient computational means to estimate the
state of a process governed by the following two equations:

xk = Axk−1 +Buk−1 + wk−1 (1)

zk = Hxk + vk (2)

Where (1) is a stochastic difference equation that encodes the system’s dynamics. The dynamics are as-
sumed to be linearly dependent on the state of the system at the previous time step xk−1 ∈ Rn and on some
driving input on the system uk−1. The dynamics are also subject to process noise that is assumed to be
distributed normally:

p(w) ∼ N(0, Q) (3)

And (2) is the measurement equation that relates some sensor reading z ∈ Rm to the state vector xk
through a linear transformation H . One of the requirements of the Kalman Filter is that this transformation
be invertible, in other words H−1 must exist.

Mathematical Derivation

The Kalman Filter is a two step process:

1) First an a priori estimate of the state x̂−k and its covariance P−k is computed by using equation (1) to
propagate the previous state and covariance.

2) Then new a posteriori estimates x̂k, Pk are computed using sensor information.

Notice that from this two estimates we have the following two errors:

1) a priori error e−k = xk − x̂−k

2) a posteriori error ek = xk − x̂k
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Our goal is then to minimize the a posteriori error covariance

Pk = E
[
eke
>
k

]
= E

[
(xk − x̂k)(xk − x̂k)

>
]

More precisely we want to minimize the trace of Pk which corresponds to the sum of the variances of each
entry in the state vector.

To determine what the optimal value of x̂k should be, we start from a linear blending of the noisy mea-
surement and the a priori estimate:

x̂k = x̂−k +K(zk −Hx̂−k ) (4)

This equation is setting the a posteriori estimate to be the a priori estimate plus the difference between the
actaual measurement zk and a measurement prediction Hx̂k weighted by a gain K. This difference is called
the residual.
For a justification of why we pick this equation for x̂k see Appendix II. We can plug this value into the
expression for Pk and then to minimize the value of trace[Pk] we take the derivative with respect to K and
set to zero. Solving for K then gives the following expressions for K and Pk:

K = P−k H>(HP−k H> +Rk)
−1 (5)

Pk = (I −KH)P−k (6)

For a derivation of this result see Appendix I.
Now to see that this behaves in an intuitively correct way, we check what happens in the limit when the
measurement noise covariance approaches zero and when the a priori state covariance approaches zero.

lim
Rk→0

K = H−1

x̂k = H−1zk

Hence if the measurement noise covariance goes to zero we trust the measurements more and more. This is
the intuitive behaviour that we expect.

lim
P−
k →0

K = 0

x̂k = x̂−k

So the a priori estimate is trusted more and more when the state a priori covariance approaches zero. This
also is in line with our intuition of how the system should behave.
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The Filter in action

Time Update

1) Project the state ahead

x̂−k = Ax̂k−1 +Buk−1

2) Project the error covariance ahead

P−k = APk−1A
> +Q

Measurement Update

1. Compute the Kalman gain

Kk = P−k H>(HP−k H> +R)−1

2. Update estimate with measurement zk

x̂k = x̂−k +Kk(zk −Hx̂−k )

3. Update error covariance

Pk = (I −Kk)P
−
k

These two update steps are performed iteratively for each time step.
It is important to note that for this discussion the matrices H,A,R,Q were considered constant. This need
not be the case, and in practice it is common for them to vary with time. The only change in the above
equations would be the addition of a subscript k to these matrices.

The Extended Kalman Filter

The Extended Kalman Filter is designed to deal with a similar system as presented earlier, but without the
linearity constraint. In other words the system dynamics and measurment equations are:

xk = f(xk−1, uk−1, wk−1)

zk = h(xk, v, k)

There is conceptually very little difference between the Extended Kalman Filter and the standard Kalman
Filter. All that is required is to linearize the functions f and h. This can be done by computing the appro-
priate Jacobian matrices:

- A: Jacobian of f with respect of x

- W : Jacobian of f with respect of w

- H: Jacobian of h with respect of x

- V : Jacobian of h with respect of v
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This gives the following equations for the prediction and update steps:

Time Update

1) Project the state ahead

x̂−k = f(x̂k−1, uk−1, 0)

2) Project the error covariance ahead

P−k = APk−1A
> +Q+WQW>

Measurement Update

1. Compute the Kalman gain

Kk = P−k H>(HP−k H> +R)−1

2. Update estimate with measurement zk

x̂k = x̂−k +Kk

(
zk − h(x̂−k , 0)

)
3. Update error covariance

Pk = (I −Kk)P
−
k
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Appendix I - Derivation of the Kalman Gain Expression

This derivation isn’t done in the original paper. It is included in this summary for completeness. Recall that
we want to minimize the trace of Pk:

Pk = E
[
eke
>
k

]
= E

[
(xk − x̂k)(xk − x̂k)

>
]

And the following expression was given for x̂k

x̂k = x̂−k +K(zk −Hx̂−k )

We can plug this back into the expression for Pk to obtain:

= E

[(
xk − x̂−k +K(zk −Hx̂−k )

)(
xk − x̂−k +K(zk −Hx̂−k )

)>]
We notice that xk − x̂−k = e−k . We also substitute the measurement equation for zk:

= E

[(
e−k +K(Hxk + vk −Hx̂−k )

)(
e−k +K(Hxk + vk −Hx̂−k )

)>]
= E

[(
e−k +K(He−k + vk)

)(
e−k +K(He−k + vk)

)>]
= E

[(
(I −KH)e−k +Kvk

)(
(I −KH)e−k +Kvk

)>]

Notice now that some cross terms cancel because E[ekv
>
k ] = 0 since they are assumed to be independent.

= E
[
(I −KH)e−k e

−>
k (I −KH)> +Kvkv

>
k K

>
]

= (I −KH)P−k (I −KH)> +KRK>

this can be rewritten as:

Pk = P−k −KHP−k − P−KH>K> +K(HP−k H> +R)K>

We want to take the derivative of the trace of this expression with respect to K. In order to do this, the
following matrix differentiation formulas are needed:

d[trace(AB)]

dA
= B>

d[trace(ACA>)]

dA
= 2AC

Using this formulas (and noticing that the trace of KHP−k is equal to the trace of P−KH>K>) we obtain:

d[tracePk]

dK
= −2(HP−k )> + 2K(HP−k H> +R)
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Setting this expression equal to zero and solving for K we obtain:

K = P−k H>(HP−k H> +R)−1

Plugging this value back into the expression for Pk we obtain:

Pk = (I −KH)P−k
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Appendix II - The Conditional Density Viewpoint

This section aims to justify the initial choice for x̂k:

x̂k = x̂−k +K(zk −Hx̂−k ) (7)

This is also not present in the paper, but is included here for completeness. We will look at the filter from a
conditional density viewpoint. The discussion will not always be rigorous, since the goal is to give a general
idea of this alternate approach and how this leads to the above expression for x̂k.

Assume that at some time step k we have by some means an optimal estimate x̂−k and its associated co-
variance P−k . The probability density of xk is:

fxk
∼ N(x̂−k , P

−
k )

Recall the measurement equation:

zk = Hx̂−k + vk

Since zk is the sum of two Gaussian distributed random variables its distribution can easily be seen to be:

fzk ∼ N(Hx̂−k , HP−k H> +R)

Now say that we know xk, meaning that xk is constant. The density of zk conditioned on xk is:

fzk|xk
∼ N(Hxk, R)

In order to obtain the density of the probability of xk given the measurment zk we can apply Bayes formula:

fxk|zk =
fzk|xk

fxk

fzk

∼
[N(Hxk, R)][N(x̂−k , P

−
k )]

[N(Hx̂−k , HP−k H> +R)]

Notice that this is the distribution that we are after for the optimal update of xk and Pk. Since it is the
optimal value of xk given that we have seen the last measurement zk. Expanding the product of Gaussians
is laborious and so it is not done here. The resulting distribution has the following parameters:

Mean = x̂−k + P−k H>(HP−k H> +R)−1(zk −Hx̂−k )

Covariance = [(P−k )−1 +H>RH]−1

Notice that the mean corresponds in fact to the earlier result that was found. And it turns out that this
expression for the covariance Pk is identical to the one presented in the previous section.
The key here is to see that the mean does in fact have the form:

x̂−k +K(zk −Hx̂−k )

which hopefully justifies this initial choice. Note that this derivation of the Kalman filter is less intuitive then
the one that was presented in this summary, which is why the derivation was started by directly assuming
the linear blending as the correct value for x̂k.
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