Project 5 EchoSure

Detecting Blood-Clots Post-Operatively In Blood Vessel Anastomoses

Students: Michael Ketcha Alessandro Asoni

Mentors: Dr. Jerry Prince Dr. Emad Boctor Dr. Nathanael Kuo

Recap of Project

Ultrasound Doppler Imaging for Tracking Changes in Blood Flow Velocity

Biodegradable Plastic Fiducial for Supplying Reliable Pose

Animation by David A. Rini

Technical Approach

Dependencies

Access to 3D printing for rapid prototyping

- Wyman Basement Access with Budget Code (Project already has funding)
- Access to ultrasound machine for gathering test data
 - Dr. Boctor's MUSIIC Lab
- Access to computer for developing and testing algorithms
 - Personal Laptops; Dr. Prince's servers if necessary

Deliverables

- Expected
 - A point location estimator system that processes ultrasound video data and returns interest points for the fiducial.
 - This system will include pure detection and point tracking. These will interact to allow for faster point detection in sequential frames.
 - Rough estimation of confidence in each detected point.
- Minimum
 - Same as expected, slower run time (not real time processing).
- Maximum
 - Statistically rigorous frameworks to optimize estimation of confidence of each detected point.
 - Pose estimator system.

Step 1: Template Matching By Columns of Image

Correlation Image

Selected Column

150 200

Peaks of Each Column

Step 2: Modified Multi-Line RANSAC

Step 3: Affine Coherent Point Drift¹

1. A. Myronenko and X.B. Song

Total Time: .1 to .5 seconds

Usually: .2 to .35 seconds

Shape Tracking

Until Now

- Started with using a Matlab implementation of the Kalman
 Filter to track a single point
- The Kalman Filter is an algorithm that is used in many different applications to estimate the state of a linear dynamic system
 - It has a **prediction** step based on the dynamics of the model
 - It has an update step based on "sensor" readings
- "Sensor" readings are given from the detection algorithm
- Currently for the dynamics we assume that the points move with constant velocity
- Works well but uses full frame detection for every frame and is slow

Upcoming

- A collaborator generated a set of acceptable poses and did PCA (Principal Component Analysis)
- We plan on using the Principal Components to improve tracking
 - Improve speed by using normalized cross correlation from one frame to the next (we implemented this already)
 - Project detected points on **Principal Components** to obtain a feasible pose

FURTHER:

- Incorporate the principal components into the Kalman Filter dynamics
- The dynamic equation of the Kalman Filter can be designed in a way that in absence of noise the pose of the system will converge towards the feasible space define by the principal components

Deliverables

- Expected
 - A point location estimator system that processes ultrasound video data and returns interest points for the fiducial.
 - This system will include pure detection and point tracking. These will interact to allow for faster point detection in sequential frames.
 - Rough estimation of confidence in each detected point pose.
- Minimum

Same as expected, slower run time (not real time processing).

- *Not yet documented and polished
- Maximum

 Statistically rigorous frameworks to optimize estimation of confidence of each detected point track fiducial shape.

Pose estimator system.

Timeline: Until Now

<u>20-27 Feb</u>

Alessandro: Build a skeleton of the estimator system with main functions that do simple (if any) processing.Michael: Object Detection - finding the set of points or lines to which the search of key

points should be limited to.

<u> 28 Feb – 6 Mar</u>

Michael + Alessandro: Test out RANSAC techniques. Start stringing together tracking and detection.

7-13 Mar

Alessandro: Start testing out Tracking algorithms (e.g. Optical Flow, Kernel Based, Kalman Filters) .

Michael: Start incorporating tracking info (region of interest) into detection.

21-27 Mar

Michael + Alessandro: Improve system. Try new algorithms and optimize code.

Timeline: Upcoming

3 Apr (MIN/EXPECTED):

Working prototype (MIN vs. EXPECTED is dependent on speed and accuracy).

<u>4 Apr – 1 May:</u>

Michael + Alessandro:

If speed/accuracy of point location estimator is not good enough:

Work on improving detection and tracking

Else:

Start looking into pose estimation Alessandro: Work on incorporating PCA results into Kalman Filter. Michael: Polish and Improve working prototype.

<u>**1 May – 8 May (MAX):</u> Michael + Alessandro:** Clean and document code. Work on poster for presentation</u>

<u>9 May</u> Poster presentation / Project Final Report

Summary

• We are on track with our schedule.

BUT

- Originally we thought at this point we would iterate over what we had.
- Now we are pursuing a PCA based Kalman Filter approach.

Questions?

Appendix

1. A. Myronenko and X.B. Song, Point-Set Registration: Coherent Point Drift, *IEEE Trans. Pattern Analysis and Machine Intelligence*, vol. 32, no. 12, pp. 2262-2275, Dec. 2010.

