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Welch, G., and G. Bishop (1995), An introduction to the Kalman Filter. 
University of North Carolina, Department of Computer Science



The Kalman Filter 

Brief Overview

• It was developed in 1960 by R.E. Kalman

• It’s a recursive optimal solution to the so called 
‘Discrete-data linear filtering problem’

• What this means in practice:
• It’s an efficient set of mathematical equations to 

estimate the optimal state of a dynamic system 
governed by the following two equations:



The Kalman Filter Equations  

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑤𝑘−1

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘

Propagation equation:

Measurement equation:

𝑥𝑘 ∊ ℜ𝑛

𝑧𝑘 ∊ ℜ𝑚

𝑃 𝑣𝑘 ~𝑁(0, 𝑅)

𝑃 𝑤𝑘 ~𝑁(0, 𝑄)

State vector

Measurement vector

Measurement noise

Process noise

𝑢𝑘 ∊ ℜ𝑟 input vector



The Kalman Filter Equations  
Example: How does this apply to our project?

𝑥𝑘 =

𝑥1
𝑦1
𝑥2
⋮
𝑦11
𝑥12
𝑦12
−
 𝑥1
 𝑦1
⋮
 𝑦12

State vector

positions

velocities



The Kalman Filter Equations  

Measurement Equation:

We are detecting each point in every frame so:

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 𝐻 =

1 0
0 1

0 0
0 0

⋯ 0 ⋯ 0
⋯ 0 ⋯ 0

0 0
⋮ ⋮

⋱ 0
0 1

⋯ 0 ⋯ 0
⋯ 0 ⋯ 0

0 0 0 0 1 0 ⋯ 0

Select first 12 entries
in state vector  𝑥𝑘

Zero out all the velocities

12

24



The Kalman Filter Equations  

Propagation Equation:

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑤𝑘

What should this equation be for our system?

NO INPUT

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝑤𝑘

Now working with constant velocity:

NOTE: We are looking into a better approach 
(shown at the end of this presentation - time permitting)

𝐴 =
1 ∆𝑡
0 1

(For a two dimensional state vector)



The Kalman Filter – Derivation 
Two step process:

• A priori estimate by propagating from previous state:

 𝑥𝑘
− = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1

• With a priori error:

𝑒𝑘
− = 𝑥𝑘 −  𝑥𝑘

−

• And a priori Covariance:

𝑃𝑘
− = 𝐸 (𝑒𝑘

− 𝑒𝑘
−)⊤



The Kalman Filter – Derivation 
Two step process:

• A posteriori estimate as linear blending:

 𝑥𝑘 =  𝑥𝑘
− + 𝐾(𝑧𝑘 −𝐻 𝑥𝑘

−) 

• With a posteriori error:

𝑒𝑘 = 𝑥𝑘 −  𝑥𝑘

• And a posteriori Covariance:

𝑃𝑘 = 𝐸[ (𝑒𝑘) 𝑒𝑘)
⊤



The Kalman Filter – Derivation 

A posteriori from a priori estimate and measurements:

 𝑥𝑘 =  𝑥𝑘
− + 𝐾(𝑧𝑘 −𝐻 𝑥𝑘

−) 

Residual

Kalman gain

NOTE: The rigorous justification for why this equation is used is a bit tricky. If you 
are interested read Appendix II of my summary on our website



The Kalman Filter – Derivation 

Objective: minimize the trace of the a posteriori error covariance:

𝑃𝑘 = 𝐸[ (𝑒𝑘) 𝑒𝑘)
⊤

= 𝐸[ (𝑥𝑘 −  𝑥𝑘) 𝑥𝑘 −  𝑥𝑘)
⊤

= 𝐸[ (𝑥𝑘 −  𝑥𝑘
− + 𝐾(𝑧𝑘 − 𝐻 𝑥𝑘

−)) 𝑥𝑘 −  𝑥𝑘
− + 𝐾(𝑧𝑘 − 𝐻 𝑥𝑘

−))⊤

Doing the expectation and taking the derivative of the trace with respect to 𝐾 gives:

𝐾 = 𝑃𝑘
−𝐻⊤(𝐻𝑃𝑘

−𝐻⊤ + 𝑅)
−1

𝑃𝑘 = (𝐼 − 𝐾𝐻)𝑃𝑘
−

NOTE: for a more detailed derivation see Appendix I of my summary



The Kalman Filter – Derivation 

Behavior in the limit:

lim
𝑅→0

𝐾 = 𝐻−1

𝑥𝑘 =  𝑥𝑘
− + 𝐾(𝑧𝑘 − 𝐻 𝑥𝑘

−) = 𝐻−1𝑧𝑘

𝑅 : measurement error covariance

We trust the measurement more

lim
𝑃𝑘
−→0

𝐾 = 0

𝑥𝑘 =  𝑥𝑘
− + 𝐾(𝑧𝑘 − 𝐻 𝑥𝑘

−) =  𝑥𝑘
−

𝑃𝑘
−: state error covariance

We trust the a priori estimate more



The Kalman Filter in Action

Source: Welch & Bishop, An Introduction to the Kalman Filter



The Extended Kalman Filter

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1)

𝑧𝑘 = ℎ(𝑥𝑘 , 𝑣𝑘)

Propagation equation:

Measurement equation:

Very Similar Conceptually: 
Use Jacobian to linearize the system and then do the same as for standard Kalman Filtering

𝐴 :     Jacobian of 𝑓 with respect to 𝑥

𝑊 :    Jacobian of 𝑓 with respect to 𝑤

𝐻 :     Jacobian of ℎ with respect to 𝑥

𝑉 :     Jacobian of ℎ with respect to 𝑣



The EKF in Action

Source: Welch & Bishop, An Introduction to the Kalman Filter



Back To Out Project

Propagation Equation:

What should this equation be for our system?

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝑤𝑘

Constant velocity is a bad assumption 

Constant acceleration might be a bad assumption as well



Principal Component Analysis

IDEA: Generate a big set of acceptable poses - simulated:

𝑥1
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𝑦11
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…

𝑥1
𝑘

𝑦1
𝑘

𝑥2
𝑘

⋮
𝑦11
𝑘

𝑥12
𝑘

𝑦12
𝑘

NOTE: This analysis was done by Nathanael Kuo who provided us with the PCs and the
respective coefficients

𝑣1, 𝑣2, 𝑣3…

𝛼1, 𝛼2, 𝛼3,…

principal componentsPCA

coefficients



PCA + State space

At the heart of the Kalman filter is a linear difference equation:

𝑥𝑘 = 𝐴𝑥𝑘−1

In continuous time this is represented by the differential equation:

𝑑  𝑥

𝑑𝑡
= 𝐴  𝑥

Which has solutions:

𝑥 t = 

𝑖

𝑣𝑖 𝑒
λ𝑖𝑡 Where 𝑣𝑖 and λ𝑖 are the eigenvectors 

and eigenvalues of 𝐴



PCA + State space

Imagine building a matrix 𝐴 such that:
• the eigenvectors are the first principal components that we saw earlier
• The eigenvalues are the negative of the inverse of the coefficients

This should give a propagation equation such that:
• in the absence of noise and measurements

• The state vector will quickly converge onto the 
principal components with highest coefficients

• And it will then slowly move towards the mean shape

NOTE: We have to be careful about the mean. PCA is done after 
subtracting the mean pose. It has to be added back in.

𝐴 = 𝑈𝐷𝑈⊤



Video courtesy of Nathanael Kuo



Video courtesy of Nathanael Kuo


