Project 5

EchoSure

Detecting Blood-Clots Post-Operatively
In Blood Vessel Anastomoses

Seminar Presentation by Alessandro Asoni

Students: Michael Ketcha
Alessandro Asoni
Mentors: Dr. Jerry Prince
Dr. Emad Boctor
Dr. Nathanael Kuo

Recap of Project

Ultrasound Doppler Imaging for Tracking Changes in Blood Flow Velocity

Biodegradable Plastic Fiducial for Supplying Reliable Pose

Technical Approach

Today’s Paper

Welch, G., and G. Bishop (1995), An introduction to the Kalman Filter. University of North Carolina, Department of Computer Science

The Kalman Filter

Brief Overview

- It was developed in 1960 by R.E. Kalman
- It's a recursive optimal solution to the so called 'Discrete-data linear filtering problem'
- What this means in practice:
- It's an efficient set of mathematical equations to estimate the optimal state of a dynamic system governed by the following two equations:

The Kalman Filter Equations

Propagation equation:

$$
x_{k}=A x_{k-1}+B u_{k-1}+w_{k-1}
$$

Measurement equation: $\quad z_{k}=H x_{k}+v_{k}$

$$
\begin{array}{rlrl}
x_{k} & \in \Re^{n} & \text { State vector } & u_{k} \in \Re^{r} \quad \text { input vector } \\
z_{k} & \in \Re^{m} & \text { Measurement vector } & \\
P\left(v_{k}\right) & \sim N(0, R) & \text { Measurement noise } & \\
P\left(w_{k}\right) \sim N(0, Q) & \text { Process noise } &
\end{array}
$$

The Kalman Filter Equations

Example: How does this apply to our project?

The Kalman Filter Equations

Measurement Equation:

We are detecting each point in every frame so:

$$
Z_{k}=H x_{k}+v_{k} \longrightarrow H=\begin{array}{cccccccc}
{\left[\begin{array}{rccccccc}
1 & 0 & 0 & 0 & \cdots & 0 & \cdots & 0 \\
0 & 1 & 0 & 0 & \cdots & 0 & \cdots & 0 \\
0 & 0 & \ddots & 0 & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & 0 & 1 & \cdots & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & \cdots & 0
\end{array}\right]} & \underbrace{\text { Zero out all the velocities }}
\end{array}
$$

The Kalman Filter Equations

Propagation Equation:

NO INPUT

$$
x_{k}=A x_{k-1}+B u_{k-1}+w_{k} \quad \longrightarrow \quad x_{k}=A x_{k-1}+w_{k}
$$

What should this equation be for our system?
Now working with constant velocity:

$$
A=\left[\begin{array}{cc}
1 & \Delta t \\
0 & 1
\end{array}\right] \quad \text { (For a two dimensional state vector) }
$$

NOTE: We are looking into a better approach
(shown at the end of this presentation - time permitting)

The Kalman Filter - Derivation

Two step process:

- A priori estimate by propagating from previous state:

$$
\hat{x}_{k}^{-}=A x_{k-1}+B u_{k-1}
$$

- With a priori error:

$$
e_{k}^{-}=x_{k}-\hat{x}_{k}^{-}
$$

- And a priori Covariance:

$$
P_{k}^{-}=E\left[\left(e_{k}^{-}\right)\left(e_{k}^{-}\right)^{\top}\right]
$$

The Kalman Filter - Derivation

Two step process:

- A posteriori estimate as linear blending:

$$
\hat{x}_{k}=\hat{x}_{k}^{-}+K\left(z_{k}-H \hat{x}_{k}^{-}\right)
$$

- With a posteriori error:

$$
e_{k}=x_{k}-\hat{x}_{k}
$$

- And a posteriori Covariance:

$$
P_{k}=E\left[\left(e_{k}\right)\left(e_{k}\right)^{\top}\right]
$$

The Kalman Filter - Derivation

A posteriori from a priori estimate and measurements:

$$
\hat{x}_{k}=\hat{x}_{k}^{-}+\underset{\text { Residual }}{K(\underbrace{\left(z_{k}-H \hat{x}_{k}^{-}\right)}_{\text {Kalman gain }}}
$$

NOTE: The rigorous justification for why this equation is used is a bit tricky. If you are interested read Appendix II of my summary on our website

The Kalman Filter - Derivation

Objective: minimize the trace of the a posteriori error covariance:

$$
\begin{aligned}
P_{k} & =E\left[\left(e_{k}\right)\left(e_{k}\right)^{\top}\right] \\
& =E\left[\left(x_{k}-\hat{x}_{k}\right)\left(x_{k}-\hat{x}_{k}\right)^{\top}\right] \\
& =E\left[\left(x_{k}-\hat{x}_{k}^{-}+K\left(z_{k}-H \hat{x}_{k}^{-}\right)\right)\left(x_{k}-\hat{x}_{k}^{-}+K\left(z_{k}-H \hat{x}_{k}^{-}\right)\right)^{\top}\right]
\end{aligned}
$$

Doing the expectation and taking the derivative of the trace with respect to K gives:

$$
\begin{gathered}
K=P_{k}^{-} H^{\top}\left(H P_{k}^{-} H^{\top}+R\right)^{-1} \\
P_{k}=(I-K H) P_{k}^{-}
\end{gathered}
$$

NOTE: for a more detailed derivation see Appendix I of my summary

The Kalman Filter - Derivation

Behavior in the limit:

$$
\lim _{R \rightarrow 0} K=H^{-1}
$$

$$
x_{k}=\hat{x}_{k}^{-}+K\left(z_{k}-H \hat{x}_{k}^{-}\right)=H^{-1} z_{k} \quad \text { We trust the measurement more }
$$

$$
\lim _{P_{k}^{-} \rightarrow 0} K=0 \quad P_{k}^{-}: \text {state error covariance }
$$

$$
x_{k}=\hat{x}_{k}^{-}+K\left(z_{k}-H \hat{x}_{k}^{-}\right)=\hat{x}_{k}^{-} \quad \text { We trust the a priori estimate more }
$$

The Kalman Filter in Action

cils

The Extended Kalman Filter

Propagation equation:

$$
x_{k}=f\left(x_{k-1}, u_{k-1}, w_{k-1}\right)
$$

Measurement equation:

$$
z_{k}=h\left(x_{k}, v_{k}\right)
$$

Very Similar Conceptually:
Use Jacobian to linearize the system and then do the same as for standard Kalman Filtering
A: Jacobian of f with respect to x
W : Jacobian of f with respect to w
H : Jacobian of h with respect to x
$V: \quad$ Jacobian of h with respect to v

The EKF in Action

Source: Welch \& Bishop, An Introduction to the Kalman Filter

Back To Out Project

Propagation Equation:

$$
x_{k}=A x_{k-1}+w_{k}
$$

What should this equation be for our system?
Constant velocity is a bad assumption

Constant acceleration might be a bad assumption as well

Principal Component Analysis

IDEA: Generate a big set of acceptable poses - simulated:

$$
\left[\begin{array}{ccccc}
x_{1}^{1} & x_{1}^{2} & x_{1}^{3} & x_{1}^{4} & x_{1}^{k} \\
y_{1}^{1} & y_{1}^{2} & y_{1}^{3} & y_{1}^{4} & y_{1}^{k} \\
x_{2}^{1} & x_{2}^{2} & x_{2}^{3} & x_{2}^{4} & x_{2}^{k} \\
\vdots & \vdots & \vdots & \vdots & \cdots \\
\vdots \\
y_{11}^{1} & y_{11}^{2} & y_{11}^{3} & y_{11}^{4} & y_{11}^{k} \\
x_{12}^{1} & x_{12}^{2} & x_{12}^{3} & x_{12}^{4} & x_{12}^{k} \\
y_{12}^{1} & y_{12}^{2} & y_{12}^{3} & y_{12}^{4} & y_{12}^{k}
\end{array}\right] \xrightarrow{\longrightarrow} \quad \begin{gathered}
\\
\\
\end{gathered}
$$

NOTE: This analysis was done by Nathanael Kuo who provided us with the PCs and the respective coefficients

PCA + State space

At the heart of the Kalman filter is a linear difference equation:

$$
x_{k}=A x_{k-1}
$$

In continuous time this is represented by the differential equation:

$$
\frac{d \vec{x}}{d t}=A \vec{x}
$$

Which has solutions:

$$
x(\mathrm{t})=\sum_{i} v_{i} e^{\lambda_{i} t} \quad \begin{aligned}
& \text { Where } v_{i} \text { and } \lambda_{i} \text { are the eigenvectors } \\
& \text { and eigenvalues of } A
\end{aligned}
$$

PCA + State space

Imagine building a matrix A such that:

- the eigenvectors are the first principal components that we saw earlier
- The eigenvalues are the negative of the inverse of the coefficients

$$
A=U D U^{\top}
$$

This should give a propagation equation such that:

- in the absence of noise and measurements
- The state vector will quickly converge onto the principal components with highest coefficients
- And it will then slowly move towards the mean shape

NOTE: We have to be careful about the mean. PCA is done after subtracting the mean pose. It has to be added back in.

Video courtesy of Nathanael Kuo

Video courtesy of Nathanael Kuo

