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Recap of Project

Ultrasound Doppler
Imaging for Tracking
Changes in Blood
Flow Velocity

Biodegradable Plastic
Fiducial for Supplying
Reliable Pose

EchoSure

Animation by David A. Rini
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Technical Approach

Final System - Pose Sequence Estimator

|
point location estimator pose position estimator
i a
Video Frames Point detector Pose estimator Pose sequence
- points N
[ > > >
Point tracker Pose tracker
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Today’s Paper

Welch, G., and G. Bishop (1995), An introduction to the Kalman Filter.
University of North Carolina, Department of Computer Science

Y @ a9 . LABORATORY FOR
St Computational
ECh\\(_)//S“re L MUSIIC C l IS ﬁf Sensing + Robotics

h o g

Research Laboratory



The Kalman Filter

Brief Overview

* |t was developed in 1960 by R.E. Kalman

* |t's a recursive optimal solution to the so called
‘Discrete-data linear filtering problem’

* What this means in practice:
* |t's an efficient set of mathematical equations to
estimate the optimal state of a dynamic system
governed by the following two equations:
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The Kalman Filter Equations

Propagation equation: X = Axk—l + Buk_l + Wi -1
Measurement equation: Zyi = H.X'k + (%%
X, € R" State vector u, € RT input vector
z, € R™ Measurement vector

P(v,)~N(0,R) Measurement noise

P(wg)~N(0,Q) Process noise
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The Kalman Filter Equations

Example: How does this apply to our project?

X171 - —
Y1
X2
: _ positions
Y11
X12
Xk = | Y12 — State vector

X1
V1 — velocities

_ylz_ - -
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The Kalman Filter Equations

Measurement Equation:

We are detecting each point in every frame so:

24
1 0 0 0 0 0
0 1 0 0 0 0

Z, = Hxp + vy, H={0 0 ~ 0 0 0| 12
i 1 0 1 - 0 0
000 00 1 0 - o
\ Y ) J

Select first 12 entries Zero out all the velocities
in state vector Xxj
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The Kalman Filter Equations

Propagation Equation:
Pag A NO INPUT

X = Axp_1 +Bug_1+ w, ——— X = Axp_1 + Wy

What should this equation be for our system?

Now working with constant velocity:

A= [(1) Alt] (For a two dimensional state vector)

NOTE: We are looking into a better approach
(shown at the end of this presentation - time permitting)

LABORATORY FOFR
Computational
Sensing + Robotics

THE JOHNS HOPKINS UNIVERSITY

- o9
Ech\%Sure Muerie CIlIS

\_/ Researc hlLaboratory




The Kalman Filter — Derivation

Two step process:

* A priori estimate by propagating from previous state:

5(,'\]; = Axk_l + Buk_l
* With a priori error:
e, = X — Xj

* And a priori Covariance:

= E(ex )(ex)']

O - o9

EchoSure .. cliS

\/ cccccccccccccccc

\[ &

Computatlnnal
Sensmg Rnhotlcs



The Kalman Filter — Derivation

Two step process:

* A posteriori estimate as linear blending:
X, =X, +K(z, — Hxy)
* With a posteriori error:
e = Xj — Xy
* And a posteriori Covariance:

P, = E[ (ex)(ex)"]

A 9 9 ORY
EchoSure Muene Cclis ﬁr Compuiationa

Sensm Rnhotlcs
& S el e _



The Kalman Filter — Derivation

A posteriori from a priori estimate and measurements:

5C\k =5C\]; +K(Zk—H5C\,;)
\ J
|

Residual

Kalman gain

NOTE: The rigorous justification for why this equation is used is a bit tricky. If you
are interested read Appendix Il of my summary on our website
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The Kalman Filter — Derivation

Objective: minimize the trace of the a posteriori error covariance:

Py, = E[ (ex)(ex) ']
= E[ (xx — %) (xy — 9?k,)T]

=E[(xx — X + K(zx — HX; ) (xx — X5, + K(zx — HX; ) ']

Doing the expectation and taking the derivative of the trace with respect to K gives:
K =P HT(HPFHT +R)

P, = (I — KH)P;

NOTE: for a more detailed derivation see Appendix | of my summary
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The Kalman Filter — Derivation

Behavior in the limit:

R : measurement error covariance

limK = H™1
R—-0
xy = X + K(z, — HX;) = H 1z, We trust the measurement more
PlimO K=0 P, : state error covariance
k -
X =X, + K(zp — HX,) =X, We trust the a priori estimate more
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The Kalman Filter in Action

Measurement Update (‘“Correct”)

Time Update (“Predict”) (1) Compute the Kalman gain

i - - -1
(2) Update estimate with measurement z;,

2) Project th ' head X, = X, —HXx,
(2) o;eci e error covariance ahea X, = xk+Kk(Zk ka)
P, = APk_lAT+ ) (3) Update the error covariance

Pk = (I—KkH)Pk

Initial estimates for X, _; and P, _,

Source: Welch & Bishop, An Introduction to the Kalman Filter
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The Extended Kalman Filter

Propagation equation: X = f(xk_l,uk_l,wk_l)

Measurement equation: Zy = h(xk,vk)

Very Similar Conceptually:
Use Jacobian to linearize the system and then do the same as for standard Kalman Filtering

A: Jacobian of f with respect to x
W . Jacobian of f with respect to w
H : Jacobian of h with respect to x

IV . Jacobian of h with respect to v
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The EKF in Action

Measurement Update (“Correct”)

s (13 g
Time Update ("Predict”) (1) Compute the Kalman gain

(1) Project the state ahead L -
rfj_ec esiea = K, = PH[(H /P H] +V R V])
X = f(&_ppup_150)

-1

(2) Update estimate with measurement z;,
(2) Project the error covariance ahead X, = X, + K k( - h( X 0 ))
Pk = AkPk _ IA}{ + Wka -1 W;{ (3) Update the error covariance

Initial estimates for X, _| and P, _,

Source: Welch & Bishop, An Introduction to the Kalman Filter
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Back To Out Project

Propagation Equation:

X = Axk_l + Wi,

What should this equation be for our system?

Constant velocity is a bad assumption

Constant acceleration might be a bad assumption as well
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Principal Component Analysis

IDEA: Generate a big set of acceptable poses - simulated:
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V1,V2,V3 ... principal components

aq, Ay, A3,... coefficients

NOTE: This analysis was done by Nathanael Kuo who provided us with the PCs and the

respective coefficients
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PCA + State space

At the heart of the Kalman filter is a linear difference equation:

Xk = AXg—1

In continuous time this is represented by the differential equation:

Which has solutions:

x(t) = z v ehit Where v; and A; are the eigenvectors
- l

: and eigenvalues of A
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PCA + State space

Imagine building a matrix A such that:
* the eigenvectors are the first principal components that we saw earlier
* The eigenvalues are the negative of the inverse of the coefficients

A=UDUT

This should give a propagation equation such that:
* in the absence of noise and measurements
e The state vector will quickly converge onto the
principal components with highest coefficients
* And it will then slowly move towards the mean shape

NOTE: We have to be careful about the mean. PCA is done after
subtracting the mean pose. It has to be added back in.
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Video courtesy of Nathanael Kuo



Video courtesy of Nathanael Kuo




