Project 5

Detecting Blood-Clots Post-Operatively In Blood Vessel Anastomoses Seminar Presentation by Alessandro Asoni

> Students: Michael Ketcha Alessandro Asoni

Mentors: Dr. Jerry Prince Dr. Emad Boctor Dr. Nathanael Kuo

Recap of Project

Ultrasound Doppler Imaging for Tracking Changes in Blood Flow Velocity

Biodegradable Plastic Fiducial for Supplying Reliable Pose

Animation by David A. Rini

Technical Approach

Today's Paper

Welch, G., and G. Bishop (1995), An introduction to the Kalman Filter. University of North Carolina, Department of Computer Science

The Kalman Filter

Brief Overview

- It was developed in 1960 by R.E. Kalman
- It's a recursive optimal solution to the so called 'Discrete-data linear filtering problem'
- What this means in practice:
 - It's an efficient set of mathematical equations to estimate the **optimal** state of a dynamic system governed by the following two equations:

Propagation equation:

$$x_k = Ax_{k-1} + Bu_{k-1} + w_{k-1}$$

Measurement equation:

$$z_k = Hx_k + v_k$$

- $x_k \in \Re^n$ State vector $u_k \in \Re^r$ input vector
- $z_k \in \Re^m$ Measurement vector

 $P(v_k) \sim N(0, R)$ Measurement noise

 $P(w_k) \sim N(0, Q)$ Process noise

Example: How does this apply to our project?

Measurement Equation:

We are detecting each point in every frame so:

$$z_{k} = Hx_{k} + v_{k} \longrightarrow H = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 0 & \ddots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & 0 & 1 & \cdots & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & \cdots & 0 \end{bmatrix} 12$$

Select first 12 entries in state vector x_k Zero out all the velocities

What should this equation be for our system?

Now working with constant velocity:

$$A = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix}$$
 (For a two dimensional state vector)

NOTE: We are looking into a better approach (shown at the end of this presentation - time permitting)

Two step process:

• *A priori* estimate by propagating from previous state:

$$\hat{x}_k^- = Ax_{k-1} + Bu_{k-1}$$

• With *a priori* error:

$$e_k^- = x_k - \hat{x}_k^-$$

• And *a priori* Covariance:

$$P_k^- = E[(e_k^-)(e_k^-)^\top]$$

Two step process:

• A posteriori estimate as linear blending:

$$\hat{x}_k = \hat{x}_k^- + K(z_k - H\hat{x}_k^-)$$

• With *a posteriori* error:

$$e_k = x_k - \hat{x}_k$$

• And *a posteriori* Covariance:

$$P_k = E[(e_k)(e_k)^{\mathsf{T}}]$$

A posteriori from a priori estimate and measurements:

$$\hat{x}_{k} = \hat{x}_{k}^{-} + K(z_{k} - H\hat{x}_{k}^{-})$$
Residual
Kalman gain

NOTE: The rigorous justification for why this equation is used is a bit tricky. If you are interested read Appendix II of my summary on our website

Objective: minimize the trace of the *a posteriori* error covariance:

$$P_{k} = E[(e_{k})(e_{k})^{\top}]$$

= $E[(x_{k} - \hat{x}_{k})(x_{k} - \hat{x}_{k})^{\top}]$
= $E[(x_{k} - \hat{x}_{k}^{-} + K(z_{k} - H\hat{x}_{k}^{-}))(x_{k} - \hat{x}_{k}^{-} + K(z_{k} - H\hat{x}_{k}^{-}))^{\top}]$

Doing the expectation and taking the derivative of the trace with respect to K gives:

$$K = P_k^- H^\top (H P_k^- H^\top + R)^{-1}$$

$$P_k = (I - KH)P_k^-$$

NOTE: for a more detailed derivation see Appendix I of my summary

Behavior in the limit:

$$\lim_{R\to 0} K = H^{-1}$$

$$x_k = \hat{x}_k^- + K(z_k - H\hat{x}_k^-) = H^{-1}z_k$$

R : measurement error covariance

We trust the measurement more

$$\lim_{P_k^- \to 0} K = 0 \qquad \qquad P_k^-: \text{ state error covariance}$$

 $x_k = \hat{x}_k^- + K(z_k - H\hat{x}_k^-) = \hat{x}_k^-$

We trust the *a priori* estimate more

The Kalman Filter in Action

Initial estimates for \hat{x}_{k-1} and P_{k-1}

Source: Welch & Bishop, An Introduction to the Kalman Filter

The Extended Kalman Filter

Propagation equation:

$$x_k = f(x_{k-1}, u_{k-1}, w_{k-1})$$

Measurement equation:

$$z_k = h(x_k, v_k)$$

Very Similar Conceptually:

Use Jacobian to linearize the system and then do the same as for standard Kalman Filtering

- A: Jacobian of f with respect to x
- W: Jacobian of f with respect to w
- H: Jacobian of h with respect to x
- V: Jacobian of h with respect to v

The EKF in Action

Source: Welch & Bishop, An Introduction to the Kalman Filter

Back To Out Project

Propagation Equation:

$$x_k = Ax_{k-1} + w_k$$

What should this equation be for our system?

Constant velocity is a bad assumption

Constant acceleration might be a bad assumption as well

Principal Component Analysis

IDEA: Generate a big set of acceptable poses - simulated:

NOTE: This analysis was done by Nathanael Kuo who provided us with the PCs and the respective coefficients

PCA + State space

At the heart of the Kalman filter is a linear difference equation:

$$x_k = A x_{k-1}$$

In continuous time this is represented by the differential equation:

$$\frac{d\vec{x}}{dt} = A\vec{x}$$

Which has solutions:

$$x(t) = \sum_{i} v_i e^{\lambda_i t}$$

Where v_i and λ_i are the eigenvectors and eigenvalues of A

PCA + State space

Imagine building a matrix A such that:

- the *eigenvectors* are the first *principal components* that we saw earlier
- The *eigenvalues* are the *negative of the inverse of the coefficients*

 $A = UDU^{\top}$

This should give a propagation equation such that:

- in the *absence of noise* and *measurements*
 - The state vector will *quickly* converge onto the *principal components* with highest coefficients
 - And it will then *slowly* move towards the *mean shape*

NOTE: We have to be careful about the mean. PCA is done after subtracting the mean pose. It has to be added back in.

Video courtesy of Nathanael Kuo

<u>File E</u> dit <u>V</u> iew Insert Iools <u>D</u> esktop <u>W</u> indow <u>H</u> elp	
집 🧀 🛃 🗞 원, 원, 원, 원) 🕲 🐙 🔏 - 코, 🛛 🖽 📖 🛄	

Video courtesy of Nathanael Kuo