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Abstract

1 Introduction

Medical physicists face a trade-off when planning oncology radiotherapy treatments. The dosimetrist must

deliver sufficient dose to kill the diseased tissue while managing the risk of a variety of possible toxicities

that may arise from damage to normal tissue.

While advances in radiotherapy allow for sophisticated three dimensional treatment plans. The models

for assessing the complication probability lag well behind. For example, the Lyman-Kutcher-Burman (LKB)

model for assessing toxicity probability neither accounts for treatment placement, nor differentiates between

higher doses over small volumes and lower doses over large volumes.

The course instructor and mentor have conducted previous work in using three dimensional shape de-

scriptors of the location of diseased tissue relative to organs as tools in treatment planning[?]. This work

explores using data within the clinical record to calculate the probability of complications. The ultimate

goal is to use the knowledge discovered to allow previous experience to inform treatment planning (Figure

1.1), and to obtain insights into the factors leading to treatment complications.

2 Background

2.1 Introduction

In this section we discuss the following in turn: the current complication probability models in radiotherapy;

motivations for applying big data techniques to the area; the knowledge discovery process; and approaches

for predicting medical outcomes using data mining.
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Figure 1.1: Using data on the clinical outcomes of previous patients provides insights into current patient
treatment planning and assessment (courtesy of Todd McNutt)

2.2 Current complication risk assessment modeling

The common measure of toxicity risk in radiotherapy is normal tissue complication probability (NTCP). The

Lyman-Kutcher-Burman (LKB) model is the most oft-cited method for is the calculating NTCP. LKB builds

upon prior work by Rubin and Cassaretti [?] that a tolerance dose (TD50) that, when delivered uniformly to

an organ’s entire volume, results in a a 50% risk of a given toxicity. LKB assumes that the effect on NTCP

of delivering a uniform dose over a partial volume of an organ is related to the effect of delivering the same

dose to the entire organ by a power function [?], that is:

TD50(V ) =
TD50(1)

V n
(2.1)

Using a normal distribution with µ = TD50, we get:

NTCP (V ) = Φ(t), where (2.2)

Φ(t) =
1√
2π

∫ t

−∞
e

−t
2 dx

t =
D − TD50(V )

σ(V )
,

σ(V ) = mTD50(V ).

Ermani, et al. [?] and Burman et al. [?] provide widely cited values for m, n, and TD50 over a variety

of organs and toxicities. Given the parameters, and assuming a constant dose, we can calculate NTCP

from equations 2.1 & 2.2. In order to account for dose variation, LKB assumes a second power relationship
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(a) LKB NTCP surface for a parotid using parame-
ters n = 0.70, m = 0.18, and TD50 = 4600[?]. x =
Dose in Gy, y = Volume proportion, and z = NTCP

(b) Dose volume histograms (DVH) of parotid gland
exposure (courtesy of Todd McNutt).

Figure 2.1: Visualization of the LKB model.

between dose and volume [?]:

∆Veff = ∆Vi

(
Di

D

) 1
n

(2.3)

In practice, D = Dmax, the maximum treatment dose the patient receives, and Di corresponds to doses

assigned to bins in a histogram. We can therefore calculate:

Veff =
∑
i

∆Veff

(
Di

D

) 1
n

(2.4)

Figure 2.1a display the interaction of dose and volume in LKM. Parameter m represents the range of

responsiveness to dose. That is the steepness along the dose plane — a low m implies a sharp increase in

risk near TD50 a higher m implies a gradual increase in risk that begins at low doses.

In the clinical setting, medical physicists visualize treatment plans using dose volume histograms (DVH).

Figure 2.1b is a collection of parotid DVH’s. Each curve represents an individual patient’s treatment plan;

patients whose subsequently experience to xerostomia are in red. The DVH can be read as “this percent

of the organ volume (y-axis) received at least this dose level (x-axis).” While NTCP’s are often not used

directly in the clinical setting, the LKB value can be computed directly from the DVH using Equation 2.4.

2.3 Motivation for refining risk assessment

Marks, et al.[?] present a number of limitations in the LKB model that restrict its direct clinical applicability.

The model reduces a DVH to a single pair of dose and volume values; the two numbers are the sole factors

in risk assessment. LKB does not evaluate factors specific to the patient, such as, dose placement, other

treatments, general health, etc.
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Twenty years of clinical experience in three-dimensional approaches to radiotherapy combined with in-

creases in cost effective storage capacity and computing processing power present future directions for refining

NTCP modeling. Bentzen et al.[?] presents a number of trends, including: addressing the more diverse spec-

trum of treatments modern oncology patients receive; personalized risk-benefit assessments; and focusing

the developing methods based on “more data” as opposed to creating “more [analytical] models.”

Improvements in NTCP calculation can increase the statistic’s applicability in the clinic in a number of

ways. For example, accurate NTCP values can be a factor in optimizing treatments. Additionally, the values

can provide insights into the biological effect of different approaches of treatment on normal tissue.

2.4 Knowledge discovery in health-care

Clinical patient data is collected in the course of treatment and stored in health information systems. The

data, therefore, are not in a format that is immediately conducive to analysis.

Fayyad, et al.[?] introduced what is generally considered the fundamentals of the process for knowledge

discovery in databases (KDD). Typically the vast majority of data analyzed was not collected for that

purpose, but rather in the course of an institution conducting its general activities. In the case of health-

care, data is generally from electronic health records (EHR), or other components within hospital information

system.

[?] divides knowledge discovery into nine steps (Figure 2.2): (1) understanding the problem domain

and the previous work in the area; (2) selecting a target dataset; Data cleaning and preprocessing; (3)

data reduction and projection; (4) matching the knowledge discovery goals with a data mining approach;

(5) exploratory analysis with hypothesis and model testing; (6) data mining; (7) interpreting results; (8)

interpreting mined patterns; and (9) acting on discovered knowledge.

Cios & Moore[?] presents issues in KDD specific to health-care, such as: the heterogeneity of medical data;

the multidisciplinary nature of the process due to the need for both clinical and computational expertise;

ethical issues arising from the nature of the problem; etc. In addition, [?] places emphasis on KDD’s iterative

nature (Figure 2.3).

2.5 Data mining: techniques and assessment

Random forests[?] are classifiers built of independently trained trees. Each tree has some mechanism for

random determination of the features under consideration. For example: different features may be selected

at each node; each node select a fixed number of inner products of the input vector and randomized weight

vector; each tree may randomly select features and use the subset across all its nodes; etc. Training individual
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Figure 2.2: The process of extracting knowledge from data (copied from [?]).

Figure 2.3: KDD areas covered by Project IX (copied from [?], selections added).
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trees uses separate bagged samples. The forest’s classification algorithm is to return a summary (generally

the mean), of each tree’s zero or one classification vote.

Tree structures have a number of advantages. Many splitting methods not only do not require scaling

and centering, but also can process both data containing both numerical and categorical features. Moreover,

random forests converge as the number of trees increases, with accuracy that is a function of the accuracy

of the underlying trees and the level of independence between the trees [?].

The characteristics above often make random forest classifiers strong candidates for application to medical

data. Many features in medicine neither lend themselves naturally to numerical representation nor are strong

signals of outcome[?].

In assessing results Cios & Moore[?] provides four levels of validity:(1) face validity — clear and obvious

inconsistencies with between the model and known fact are not present; (2) internal validity — in classifica-

tion, for example, a metric such as the receiver operating characteristic curve supports the model’s predictive

performance; external validity — the model is resistant to over-fitting and maintains performance against

other external datasets; and (4) clinical utility — the ability for clinicians to interpret the results in the

context of treatment.

2.6 Project management

A “Surgical Team” surgical team methodology[?, ?] to software project management entails a chief pro-

grammer who is ultimately responsible for the project’s software development. Other project roles naturally

naturally divide into administrative and technical functions. The project team normally consists of a total

ten members, including the chief programmer.

2.7 Summary

In assessing normal tissue complication probability (NTCP), the conventional Lyman-Kutcher-Burman

(LKB) model, approach assumes: a TD50 value that represents a constant dose distributed uniformly over

the organ resulting in a 50% probability of a given complication[?]; a power function equivalences between

organ volume and dose that transform a dose volume histogram (DVH) into two values — maximum dose

(Dmax) and effective dose(Veff )[?, ?]; and parameterization that fits dose to Dmax and Veff to a normal

distribution[?, ?].

LKB limits analysis to the DVH; it does not account for the multi-factor nature of predicting radiation

oncology complications. The lack of robustness limits the model’s applicability in the clinic [?]. In refining

NTCP calculation focus is shifting from improving modeling to exploiting the increasing amounts of data
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now available within the EHR, such as treatment plans, previous chemotherapy, medical history, etc.[?]

Extracting the information and performing the analysis necessary to create sophisticated data-driven

NTCP models requires the KDD process. KDD, both generally and in medicine, is a multi-step, interdisci-

plinary, and iterative process[?, ?]. The process requires a team of individuals with a combination of domain

knowledge, technical expertise, and project management skills. The result of a successful KDD process is a

pipeline that transforms data within a database into a format that is suitable for data-mining; analysis of

the data-mining results then yield new knowledge.

In medicine, the data-mining algorithms and assessment must be applicable to a broad mixture of nu-

merical, and categorical information. The random forest algorithms often are highly suitable due to their

underlying tree based structure and convergence properties. For assessing classification effectiveness, the

receiver operating characteristic’s area under the curve is a frequently used metric because it can capture

both specificity and sensitivity.

The “Surgical Team” approach to managing a technical project, such as a KDD task, organizes a team

around a chief programmer. The chief programmer is responsible for the entire technical implementation. The

other nine team members provide support; their roles generally separate into managing either administrative

or technical functions that are necessary for successful project completion.

3 Methodology

3.1 Project management

3.1.1 Team members

Fumbeya Marungo, a first-year PhD student in Computer Science served as Project IX’s team lead (TL);

Hilary Paisley, an undergraduate student double majoring in Biomedical Engineering and Applied Math-

ematics served as the project manager (PM); John Rhee, an undergraduate student double majoring in

Biomedical Engineering and Computer Science served as the software engineer (SE).

Dr. Todd McNutt, and Dr. Scott Robertson, both of the Radiation Oncology Department, served as

mentors and provided domain expertise in medical physics.

Assessments of the mandated artifacts and suggested improvements were provided by course instructor

Dr. Russell Taylor of the Computer Science Department.
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Figure 3.1: Project IX deliverables

3.1.2 Team member responsibilities — who did what

Project IX’s used an abridged version of the “Surgical Team” approach (see Section 2.6). The PM’s re-

sponsibilities generally covered the team’s administrative requirements, including: delivering 1st drafts of

presentation slides; maintaining the project plan in ProjectLIBRE (an open source Microsoft Project com-

patible project management program); creating custom calendars of the planning schedule; and maintaining

the team’s web site. In addition, Hilary requested technical tasks. Her technical responsibilities included:

researching the random forest algorithm; reviewing the Weka’s[?] random forest implementation; and both

reviewing and commenting the team’s source code.

The SE’s responsibilities generally covered the Project IX’s technical requirements, including: creating

the 1st draft of that software connects to the Oncospace database and reads the ROI mask and

As the chief programmer[?, ?], the TL’s responsibilities entailed: deciding upon the technical approach;

mapping the KDD steps[?, ?] (see Section 2.4) to a tangible project plan; assigning tasks; transforming the

“1st drafts” provided by the team into the finished deliverables; and data mining.

3.1.3 Deliverables

Project IX’s minimum deliverables were: (1) an analytical pipeline consisting of an analytic sandbox (Section

3.2), software to for cleaning and preparing Oncospace’s data, and a data mining algorithm for calculating

xerostomia NTCP using parotid gland data; and a report on the results. The expected deliverables were

to find a data mining algorithm that provided better prediction performance than the LKB model. The

maximum deliverable was to demonstrate the general nature of the platform by performing analysis on a

second organ and complication (Figure 3.1).
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No. Task Start End Critical Dependencies
1 Select Project 28-Jan-14 30-Jan-14 None
2 Maintain Wiki 28-Jan-14 9-May-14 None
3 Project Planning Presentation 11-Feb-14 11-Feb-14 None
4 Project Planning Report 17-Feb-14 17-Feb-14 None
5 Project Planning 3-Feb-14 17-Feb-14 None
6 Setup Development Environment 6-Feb-14 20-Feb-14 None
7 Literature Review 11-Feb-14 28-Feb-14 Input from mentors
8 IRB 14-Feb-14 19-Feb-14 None
9 Database Access 20-Feb-14 27-Feb-14 Task 8, Mentor action, Support JHH IT
10 Target Database Access 20-Feb-14 20-Feb-14 Task 8, Mentor action, Support JHH IT
11 Meeting with mentors 20-Feb-14 20-Feb-14
12 Develop Target Database 20-Feb-14 11-Mar-14 Input from mentors
13 Begin Preparing Paper Seminar 20-Feb-14 5-Mar-14 Task 7, Input from mentors
14 Data Cleansing and Preprocessing 24-Feb-14 6-Mar-14 Task 12, Input from mentors
15 Meeting with mentors 27-Feb-14 27-Feb-14 None
16 Paper Presentation 6-Mar-14 6-Mar-14 Task 13
17 Data Reduction and Transformation 6-Mar-14 25-Mar-14 Task 14
18 Meeting with mentors 10-Mar-14 10-Mar-14 None
19 Meeting with mentors 14-Mar-14 14-Mar-14 None
20 Data Mining 13-Mar-14 27-Mar-14 Task 17, Input from mentors
21 Check Point Presentation 18-Mar-14 18-Mar-14
22 Assess Models 20-Mar-14 10-Apr-14 Task 20, Input from mentors
23 Writing Report 20-Mar-14 9-May-14 Task 22
24 Integrate Software 10-Apr-14 2-May-14 Task 22
25 Work on Poster 11-Apr-14 9-May-14 Task 22
26 Poster Day 9-May-14 9-May-14 Task 23, Task 25

Table 3.1: Original tasks and critical dependencies

3.1.4 Management planning

Table 3.1 provides Project IX’s initial task list. The tasks incorporate the course requirements as well as the

steps in the KDD process. The TL an PM monitored task progress using ProjectLIBRE. As the need arose

tasks were added.

In addition to the project plan, the team held semiweekly on Mondays at 10pm and Thurdays at 3pm.

When necesary, generally every two weeks, the Thursday meeting would double as a mentor meeting.

Critical dependencies — iėḋependencies that threaten to delay the schedule — were addressed with

schedule changes and task assignments during the team meetings.

3.2 The analytic sandbox

An analytic sandbox is a staging area for performing exploratory data analysis without impacting Oncospace[?].

The KDD data cleansing and preprocessing step (see Section 2.4) occurs as data is extracted from the On-

cospace and stored in the analytic sandbox.

The red rectangles in Figure 3.2 surround the tables in Oncospace that contain data moved to the analytic

sandbox. The 3D data consists of region of interest (ROI) masks — stored in the RegionsOfInterest table
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Figure 3.2: Project IX deliverables

— and the dose grids — stored in the RadiotherapySessions table. Data for both are from the treatment

planning tools. The ROI masks is a binary grid of voxels for a given ROI (eġṫhe left parotid ROI).

Dose grids are stored in Oncospace as binary large objects (BLOBs) as an ordered list of dosages (in

cGy), with each element representing a voxel. Each dose grid averages 3.5MB, as noted in previous work,

compression can offer significant improvements in both storage requirement and communication latency with

little additional processing time[?]. During as part of preprocessing, data grids are stored in the sandbox as

gzipped BLOBs.

During the initial uploading of data into Oncospace, dose grids were stored in both big endian and little

endian format; as part of data cleansing, the dose grids are stored in the sandbox exclusively in big endian

format.

The data preprocessing also removed need for the intermediate PatientRepresentationsId. All data is

directly linked to a patient via the PatientId. Ground truth data is in the Assessments table. Figure 3.3 is

the data model for the resulting analytic sandbox.

3.3 The software

Project IX’s software platform is primarily written in Java 7, with some Microsoft Transact-SQL queries,

and Groovy scripting. The 3-D parotid visualizations are generated by Matlab.

3.4 Data mining and evaluation

For each patient i in the dataset we use the DVH to calculate NTCPi using Equation 2.2.

We then grouped dose into five bands in (cGy): (1) 500 - 2499; (2)2500 - 3999; (3) 4000 - 5499; (4) 5500

- 6999; (5) ≥ 7000
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Figure 3.3: Project IX deliverables

4 Results

5 Discussion

6 Conclusion

A Management plan
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