<Robo-ELF>

Human Subject Study, Controller, Computer Vision Tools Checkpoint Presentation

ciis

Mentors Kevin Olds Dr. Richmon Members Jong Heun Kim (BME) Tae Soo Kim (CS) Steve Park (ME)

Courtesy of Kevin Olds

Project Goal

- 1. Program capable of providing quantitative endoscopic measurements from several monocular endoscopic images
- 1. Create ergonomic controller for the robot
- 1. Acquire clinical experimental data.

Background/Relevance

- Robo-ELF stands for Robotic Endo-Laryngeal Flexible scope system
- Rigid Endoscope vs Flexible Endoscope
- Significances
 - Three active and two passive DOF
 - Keep the scope rigidly in place

ciis

- Overcome line of sight constraints
- Allows one or two handed operations

*Courtesy of Kevin Olds

Background/Relevance (Cont.)

- Current Drawbacks
 - Bulky and not-so-ergonomic joystick
 Digital (only On/Off states)
 - Endotracheal tube insertion for measurements.

Background/Relevance (Cont.)

- Current Drawbacks
 - Bulky and not-so-ergonomic joystick
 Design a new intuitive and ergonomic controller.
 - Endotracheal tube insertion for measurements.
 Endoscopic measurement software

LABORATORY FOR Computational Sensing + Robotics

Human Subject Study Goals

- To prove Robo-ELF as a superior system
- Knowledge of IRB protocols
 - tasks to test performance
- Full proficiency in setting up/ taking down of Robo-ELF
- Get appropriate training
- Tuning the robot for clinical use

HSS- Current State

- IRB approved ✓
- OR set up 🗸
- Scope comparison test
 - Traditional rigid scopes have been updated
 - HD quality
 - Current Robo-ELF scope is outdated
 - In the process of obtaining a new version of flexible endoscope

Deliverables

- 1) Minimum (estimated March 26, 2014):
- X A. Assist Dr. Richmon in using the Robo-ELF Scope in the OR.
 - B. A fully designed ergonomic controller for the Robo-ELF Scope manipulation.
 - C. Documentation for the Robo-ELF Scope controller
 - D. Software to get real measurements from 2D scope images of an artificial setting + software documentation

1) Expected (estimated April 30, 2014):

- A. Fully interfaced and functioning ergonomic controller with the Robo-ELF.
- B. Software to get real measurements from 2D scope images of the larynx.
- C. Software documentation
- 1) Maximum (estimated May 07, 2014)

ciis

- A. Identify the disadvantages with the current prototype (feedback from surgeons) and produce an improved version of the controller.
- B. Software that reconstructs a 3D model from the 2D scope images.

ERC | CISST

- Characteristics of joystick design
 - Small and intuitive one-handed control interface
 - Overall design is compact (4"×4"×8") and can be operated with only one hand.
 - The motion of joystick is parallel to that of scope.
 - Self reorientation and Haptic feedback
 - Gimbal system is implemented on each axis of rotation.
 - Analog sensing instead of digital
 - Linear potentiometers are used to sense the degree of rotation.

- Small and intuitive one-handed control interface
 - Overall design is compact (5"×5"×8") and can be operated with only one hand. The motion of joystick is parallel to that of scope.

- Self reorientation and Haptic feedback
 - Spring-tempered sheet metal is ordered from McMaster-Carr and expected to be arrived by this week.

ERC | CISST

https://www.youtube.com/watch?v=zIc_aMcjkkA

ciis

Computationa

Analog sensing instead of digital
 O Pair of Potentiometer for redundancy

ERC | CISST

Joystick- Current State

- Potentiometers
- Arduino 🗸
- Gimbal system components In progress
 - Spring-tempered metal sheets are expected to be arrived by this week.
- Digital Media Center MakerBot In progress
 - The body of the joystick is expected to be printed by this week.

Deliverables

- 1) Minimum (estimated March 26, 2014):
 - A. Assist Dr. Richmon in using the Robo-ELF Scope in the OR.
 - B. A fully designed ergonomic controller for the Robo-ELF Scope manipulation.
- Work in progress C. Documentation for the Robo-ELF Scope controller
 - D. Software to get real measurements from 2D scope images of an artificial setting + software documentation
 - 1) Expected (estimated April 30, 2014):
 - A. Fully interfaced and functioning ergonomic controller with the Robo-ELF.
 - B. Software to get real measurements from 2D scope images of the larynx.
 - C. Software documentation
 - 1) Maximum (estimated May 07, 2014)

ciis

- A. Identify the disadvantages with the current prototype (feedback from surgeons) and produce an improved version of the controller.
- B. Software that reconstructs a 3D model from the 2D scope images.

ERC | CISST

Х

• Intuition: Stereo Vision

Image courtesy of Prof. Mubarak Shah of University of Central Florida

• Workflow

• Camera calibration — Camera parameters

Minimum Deliverable: 3D Distance Software for an artificial scene

• Image unwarping using camera's intrinsic parameters

Minimum Deliverable: 3D Distance Software for artificial scene

• Stereo image rectification + correspondence

Minimum Deliverable: 3D Distance Software for artificial scene

3D distance measurement from a pair of 2D images

JOHNS HOPKINS WHITING SCHOOL of ENGINEERING 3D distance:

ciis

21.5089

ERC | CISST

Ground Truth = 22.11 mm % err = 2.712 %, Good

mm

Deliverables

- 1) Minimum (estimated March 26, 2014):
- **A.** Assist Dr. Richmon in using the Robo-ELF Scope in the OR.
 - B. A fully designed ergonomic controller for the Robo-ELF Scope manipulation.
- Work in progress C. Documentation for the Robo-ELF Scope controller
 - D. Software to get real measurements from 2D scope images of an artificial setting + software documentation
 - 1) Expected (estimated April 30, 2014):
 - A. Fully interfaced and functioning ergonomic controller with the Robo-ELF.
 - B. Software to get real measurements from 2D scope images of the larynx.
 - C. Software documentation
 - 1) Maximum (estimated May 07, 2014)

ciis

- A. Identify the disadvantages with the current prototype (feedback from surgeons) and produce an improved version of the controller.
- B. Software that reconstructs a 3D model from the 2D scope images.

ERC | CISST

Expected Deliverable: 3D Distance Software for the Larynx

• Terrible results

ciis

120.8275

ERC | CISST

Ground Truth ~= 16 mm % err = 86 %, Outrageous

mm

Computational Sensing + Robotics

Expected Deliverable: 3D Distance Software for the Larynx

- Terrible results due to inaccurate baseline caused by interfered scope tip movement.
 - Confined workspace in throat compared to free space where everything was tested and calibrated.

Expected Deliverable: 3D Distance Software for the Larynx

Re-calculated robot baseline in throat

Ground Truth ~= 16 mm **m% err = 6.67 %. Much Better**

3D distance

15.7212

Computational Sensing + Robotics

Deliverables

- 1) Minimum (estimated March 26, 2014):
- X A. Assist Dr. Richmon in using the Robo-ELF Scope in the OR.
 - B. A fully designed ergonomic controller for the Robo-ELF Scope manipulation.
- Work in progress C. Documentation for the Robo-ELF Scope controller
 - D. Software to get real measurements from 2D scope images of an artificial setting + software documentation
 - 1) Expected (estimated April 30, 2014):
 - A. Fully interfaced and functioning ergonomic controller with the Robo-ELF.
 - B. Software to get real measurements from 2D scope images of the larynx.
 - C. Software documentation
 - 1) Maximum (estimated May 07, 2014)

ciis

- A. Identify the disadvantages with the current prototype (feedback from surgeons) and produce an improved version of the controller.
- B. Software that reconstructs a 3D model from the 2D scope images.

ERC | CISST

Dependencies

- Access to Robo-ELF
 - JHU IRB approval
 - Just approved!
 - Medical consult & OR visit
 - Images from the scope
 - Software for 3D reconstruction
 - OpenCV, Matlab
 - Cost
 - The project is already funded by Johns Hopkins Hospital Department of Otolaryngology and Johns Hopkins University Internal Funds.
 - Will be funded up to \$1000 (but most likely not have to spend over \$300)

Scope

Milestones

	Milestone	Planned Date	Expected Date	Status		
1	Scope image data collection	Feb. 12	Feb. 12	Completed		
	Camera calibration	Feb. 26	Feb. 12	Completed		
	Robot calibration	Feb. 26	Feb. 20	Completed		
2	Initial CAD design of the controller	Feb. 26	Feb. 24	Completed		
3	Order and acquire all controller parts	Mar. 12	Apr. 01	Delayed		
4	Build prototype	Mar. 19	Apr. 09	In progress		
	Interfacing with the robot	Mar. 26	Apr. 02	Delayed		
5	3D distance from 2D scope images of an artificial scene	Mar. 26	Mar. 12	Completed		
	Minimum deliverable met					
	3D distance from 2D scope images of the larynx	Apr. 09	Apr. 09	In Progress		
	Expected deliverable met					
6	Get input from Dr.Richmon about the controller	Apr. 09	Apr. 09			
7	3D reconstruction of an artificial scene using the scope images	Apr. 30	Apr. 30			
8	3D reconstruction of the larynx	May. 07	May. 07			

CIIS 🐺 ERC | CISST

LABORATORY FOR Computational Sensing + Robotics THE JOHNS HOPKINS UNIVERSITY

Timeline

					Minimum Deli				Expected Deliv					
	Feb			March				April					May	
Events	12	19	26	5	12	19	26	2	2	9 16	23	30	7	9
Brainstorming/Planning														
* Initial Data Collection														
(Camera calibration)														
* Feature correspondence Algorithm														
* 3D measurements of an aritificial scene														
* Improved correspondence Alg.														
* 3D measurements of larynx														
* Dense feature matching algorithm														
* Camera pose estimation														
* 3D Reconstruction														
Documentation														
*CAD design for ergonomic														
controller														
*Building the Controller														
Acquire material								Dela	yed, Ex	p . 4/1				
Build prototype									Delay	ed, Exp.	4/2			
Interfacing										Ĺ L				
System review														
Connecting to Robot														
Evaluation														
Documentation														
*Clinical experiments of														
ROBO-ELF performance					Prog	ress H	<u>alted</u>							
*Final poster/presentation preparation							Minimum Deli		Expected Del	i\				
		1	2		3	4	5)	6	Ď		1	6	
8				_										
IOHNS HODKINS							4		ORATORY F	0 R				
WHITING SCHOOL		L	Cİ	is		RC C	ISST		Co	mputation nsing + Ro	nal obotics			

THE JOHNS HOPKINS UNIVERSITY

of ENGINEERING

Timeline

Questions?

