<Robo-ELF>

Human Subject Study, Controller, Computer Vision Tools

Mentors Kevin Olds Dr. Richmon Members Jong Heun Kim (BME) Tae Soo Kim (CS) Steve Park (ME)

Courtesy of Kevin Olds

ciis

Project Goal

- Program capable of providing quantitative endoscopic measurements from several monocular endoscopic images
- 2. Create ergonomic controller for the robot
- 3. Acquire clinical experimental data.

Background/Relevance

- Robo-ELF stands for Robotic Endo-Laryngeal Flexible scope system
- Rigid Endoscope vs Flexible Endoscope
- Significances
 - Three active and two passive DOF
 - Keep the scope rigidly in place

ciis

- overcome line of sight constraints
- Allows one or two handed operations

*Courtesy of Kevin Olds

Background/Relevance (Cont.)

- Current Drawbacks
 - Bulky and not-so-ergonomic joystick
 Digital (only On/Off states)
 - Endotracheal tube insertion for measurements.

Background/Relevance (Cont.)

- Current Drawbacks
 - Bulky and not-so-ergonomic joystick Design a new intuitive and ergonomic controller.
 - Endotracheal tube insertion for measurements. Δ Endoscopic measurement software

Technical Approach (Human Subject Study)

- To prove Robo-ELF as a superior system
- Knowledge of IRB protocols
 - tasks to test performance
- Full proficiency in setting up/ taking down of Robo-ELF
- Get appropriate training
- Tuning the robot for clinical use

- A new joystick design **must** have...
 - Intuitive control interface
 - Small and easy to operate with one hand
 - Self reorientation
 (velocity control vs. position control)
 - Haptic feedback
 - Analog sensing instead of digital
 - Redundant input for safety
 - Cheap

Intuitive control interface/Small and easy to operate with one hand

- Self reorientation/Haptic feedback
 - Gimbal System

https://www.youtube.com/watch?v=zIc_aMcjkkA

- Analog sensing instead of digital
 - $\circ~$ Pair of Potentiometer for redundancy

3D Distance From 2D Scope Images

• Intuition: Stereo Vision

Image courtesy of Prof. Mubarak Shah of University of Central Florida

驳 ERC | CISST

ciis

Computational

Sensing + Robotics

HE JOHNS HOPKINS UNIVERSITY

3D Distance From 2D Scope Images

• Workflow

3D Distance From 2D Scope Images

Current Progress

• Camera calibration — Camera parameters

Current Progress

• Image unwarping using camera's intrinsic parameters

Current Progress

Stereo image rectification + correspondence

Left image Right image Feature Correspondence U X

CIIS 🛐 ERC | CISST

Deliverables

- 1) Minimum (estimated March 26, 2014):
 - A. Assist Dr. Richmon in using the Robo-ELF Scope in the OR.
 - B. A fully designed ergonomic controller for the Robo-ELF Scope manipulation.
 - C. Documentation for the Robo-ELF Scope controller
 - D. Software to get real measurements from 2D scope images of an artificial setting + software documentation
- 2) Expected (estimated April 30, 2014):
 - A. Fully interfaced and functioning ergonomic controller with the Robo-ELF.
 - B. Software to get real measurements from 2D scope images of the larynx.
 - C. Software documentation
- 3) Maximum (estimated May 07, 2014)

ciis

A. Identify the disadvantages with the current prototype (feedback from surgeons) and produce an improved version of the controller.

ERC | CISST

B. Software that reconstructs a 3D model from the 2D scope images.

Dependencies

- Access to Robo-ELF
- 🖊 JHU IRB approval
 - Just approved!
- Medical consult & OR visit
 - Images from the scope
 - Software for 3D reconstruction
 - OpenCV, Matlab
- 🛃 Cost
 - The project is already funded by Johns Hopkins Hospital Department of Otolaryngology and Johns Hopkins University Internal Funds.
 - Will be funded up to \$1000 (but most likely not have to spend over \$300)

Milestones

	Milestone	Planned Date	Expected Date	Status	
1	Scope image data collection	Feb. 12	Feb. 12	Completed	
	Camera calibration	Feb. 26	Feb. 12	Completed	
	Robot calibration	Feb. 26	Feb. 20	Completed	
2	Initial CAD design of the controller	Feb. 26	Feb. 24	Completed	$\overline{}$
3	Order and acquire all controller parts	Mar. 12	Mar. 12	In progress	\leq
4	Build prototype	Mar. 19	Mar. 19		<
	Interfacing with the robot	Mar. 26	Mar. 24		\checkmark
5	3D distance from 2D scope images of an artificial scene	Mar. 26	Mar. 12	In progress	
	Minimum deliverable met				
	3D distance from 2D scope images of the larynx	Apr. 09	Apr. 09		\checkmark
	Expected deliverable met				
6	Get input from Dr.Richmon about the controller	Apr. 09	Apr. 09		
7	3D reconstruction of an artificial scene using the scope images	Apr. 30	Apr. 30		
8	3D reconstruction of the larynx	May. 07	May. 07		

CIIS 😽 ERC | CISST

Timeline

				Minimum Deli				Expected Deliv						
	Feb			March				April					May	
Events	12	2 19	26	5	12	19	26	2	. 9	16	23	30	7	9
Brainstorming/Planning														
* Initial Data Collection														
(Camera calibration)														
* Feature correspondence Algorithm														
* 3D measurements of an aritificial scene														
* Improved correspondence Alg.														
* 3D measurements of larynx														
* Dense feature matching algorithm														
* Camera pose estimation														
* 3D Reconstruction														
Documentation														
*CAD design for ergonomic														
controller														
*Building the Controller														
Acquire material														
Build prototype														
Interfacing														
System review														
Connecting to Robot														
Evaluation														
Documentation														
*Clinical experiments of														
ROBO-ELF performance														
*Final poster/presentation preparation							Minimum Deli		Expected Deliv					
		1	2		3	4	5	5	6			7	8	

Management

- Weekly meeting with Kevin Olds (Wed 3pm).
- Bi-weekly team meetings.
- Tae Soo Kim: Computer Vision Component
- Jong Heun Kim: Human Subject Study
- Steve Park: Ergonomic Controller

Reading List

- 1) Darius Burschka, Ming Li, Russell Taylor, and Gregory D. Hager. Scale-Invariant Registration of Monocular Stereo Images to 3D Surface Models. In *Proceedings of IROS*, pages 2581-2586, 2004.
- 2) Darius Burschka and Gregory D. Hager. V-GPS Image-Based Control for 3D Guidance Systems. In *Proc. of IROS, pages* 1789–1795, October 2003.
- 3) Darius Burschka and Gregory D. Hager. V-GPS(SLAM): Vision-Based Inertial System for Mobile Robots. In *Proc. of ICRA, April* 2004.
- 4) Olof Enqvist, Fredrik Kahl, Carl Olsson. 2011. Non-Sequential Structure from Motion. *Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference*. p. 264-271.
- 5) Daniel Mirota, Russell H. Taylor, Masaru Ishii, and Gregory D. Hager. Direct endoscopic video registration for sinus surgery. In *Medical Imaging 2009: Visualization, Image-guided Procedures and Modeling. Proceedings of the SPIE*, volume 7261, pages 72612K-1 72612K-8, February 2009.
- Kevin Olds, Alexander T. Hillel, Elizabeth Cha, Martin Curry, Lee M. Akst, Russell H. Taylor, Jeremy D. Richmon. Robotic Endolaryngeal Flexible (Robo-ELF) Scope: A Preclinical Feasibility Study. *The Laryngoscope*; 2011; 121; 2371-2374
- 7) Toan D. Pham, Rucker Ashmore, Lisa Rotelli. 2011. Proportional joystick with integral switch. U.S. Patent 7931101, filed October 13, 2006, and issued April 26, 2011.
- 8) Hanzi Wang, Daniel Mirota, and Gregory D. Hager. A generalized kernel consensus based robust estimator. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 32(1):178-184, 2010.

ciis

9) William M. Wells III, Paul Viola, Hideki Atsumi, Shin Nakajima, Ron Kikinis. 1996. Multi-modal volume registration by maximization of mutual information. *Medical Image Analysis*. v. 1. p 35–51.

Thank you. Questions?

