<Robo-ELF>

Human Subject Study, Controller, Computer Vision Tools Seminar Presentation

Courtesy of Kevin Olds

Mentors

Kevin Olds
Dr. Richmon
Members
Jong Heun Kim (BME)
Tae Soo Kim (CS)
Steve Park (ME)

Project Goal

1. Program capable of providing quantitative endoscopic measurements from several monocular endoscopic images
2. Create ergonomic controller for the robot
3. Acquire clinical experimental data.

Project Goal

1. Program capable of providing quantitative endoscopic measurements from several monocular endoscopic images
2. Create ergonomic controller for the robot
3. Acquire clinical experimental data.

Background/Relevance (Cont.)

- Current Drawbacks
- Bulky and not-so-ergonomic joystick
- Digital (only On/Off states)
- Endotracheal tube insertion for measurements.

Background/Relevance (Cont.)

- Current Drawbacks
- Bulky and not so ergonomic joystick

Design a new intuitive and ergonomic controller.

- Endotracheal tube insertion for measurements.

Endoscopic measurement software

Today's Paper

H. Kawasaki, R. Furukawa, R. Sagawa, Y. Yagi. Dynamic Scene Shape Reconstruction Using a Single Structured Light Pattern. Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on 1-8.

Motivation

- Wish to obtain physical measurements of a target from an image.
- Dense shape reconstruction using a single frame image.

Passive vs. Active Stereo vision

Introduction

- Single scanning technique.
- Use a grid pattern formed by a number of straight horizontal and vertical lines.
- No global smoothness constraint required

Image courtesy of H. Kawasaki, R. Furukawa, R. Sagawa and Y. Yagi

System Configuration

- A camera and a projector (calibrated)
-> Intrinsic parameters, relative positions and orientations
- A grid pattern projected and captured by camera

Target object

Problem Definition

- CVPP = Calibrated Vertical Pattern Plane
- $\mathrm{CHPP}=$ Calibrated Horizontal Pattern Plane
- $L v=$ Line contained by all CVPP
- Lh = Line contained by all CVPP

A calibrated projector means that..
-> All parameters for the VPPs and HPPs in 3D space are known.

Problem Definition Cont.

- VPC = Vertical Pattern Curve
- HPC = Horizontal Pattern Curve
- Captured intersections = Intersections between VPCs and HPCs
- UVPP = Unknown Vertical Pattern Plane

The VPP that contains a given VPC. (No knowledge of correspondence)

- UHPP = similarly..

Figure 2. CVPPs and UVPPs.

Problem Definition Cont.

- Given all that, the goal is to:

Determine correspondences between the UVPPs (UHPPs) and CVPPs (CHPPs)

3D positions of all the captured intersections

Outline of the Solution

Intuition: Derive linear equations based on conditions of co-planarity with regard to UVPPs and UHPPs.

1. Captured intersection provides a linear constraint equation with regard to the UVPP or UHPP that contains it.
2. All UVPPs must include Lv, similarly with UHPPs

Figure 2. CVPPs and UVPPs.

These constraints form a system of linear equations

Solving Coplanarity Constraints (Math)

- Let v_{k} and h_{l} be some UVPP and UHPP obtained from the captured image.
- $\left(s_{k, l}, t_{k, 1}\right)$ be image coordinates of the intersection between v_{k} and h_{l}.
- The planes v_{k} and h_{l} are represented by
${ }^{(1)} a_{k} x+b_{k} y+c_{k} z+1=0, d_{l} x+e_{l} y+f_{l} z+1=0$.
- The location of the intersection ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) can be represented in image coordinates

$$
\begin{equation*}
x=\gamma s_{k, l}, y=\gamma t_{k, l}, z=-\gamma \tag{2}
\end{equation*}
$$

- Combining these equations

$$
\begin{equation*}
\underbrace{s_{k, l}\left(a_{k}-d_{l}\right)+t_{k, l}\left(b_{k}-e_{l}\right)-\left(c_{k}-f_{l}\right)=0}_{\text {Known (computed from the captured image) }} \tag{3}
\end{equation*}
$$

Solving Coplanarity Constraints (Math)

- v_{k} must contain the line $L v$ which contains the optical center O_{p} at $\left(\mathrm{P}_{\mathrm{x}}, \mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{z}}\right)$ and with the direction vector for Lvbeing ($\mathrm{Q}_{x}, \mathrm{Q}_{\mathrm{y}}, \mathrm{Q}_{z}$)

$$
\begin{align*}
a_{k} P_{x}+b_{k} P_{y}+c_{k} P_{z}+1 & =0, \tag{4}\\
a_{k} Q_{x}+b_{k} Q_{y}+c_{k} Q_{z} & =0 . \tag{5}
\end{align*}
$$

- Similar holds for the h_{l} with the direction vector for $\mathrm{L} h$ being $\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}, \mathrm{R}_{\mathrm{z}}\right)$

$$
\begin{array}{r}
d_{l} P_{x}+e_{l} P_{y}+f_{l} P_{z}+1=0, \\
d_{l} R_{x}+e_{l} R_{y}+f_{l} R_{z}=0 . \tag{7}
\end{array}
$$

Note: $\left(P_{x}, P_{y}, P_{z}\right)$ and $\left(Q_{x}, Q_{y}, Q_{z}\right)$ are known

Figure 2. CVPPs and UVPPs.

Solving Coplanarity Constraints (Math)

- Put together all constraints to form a system of linear equations

$$
\begin{equation*}
s_{k, l}\left(a_{k}-d_{l}\right)+t_{k, l}\left(b_{k}-e_{l}\right)-\left(c_{k}-f_{l}\right)=0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
a_{k} P_{x}+b_{k} P_{y}+c_{k} P_{z}+1=0 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
a_{k} Q_{x}+b_{k} Q_{y}+c_{k} Q_{z}=0 \tag{5}
\end{equation*}
$$

$$
\begin{array}{r}
d_{l} P_{x}+e_{l} P_{y}+f_{l} P_{z}+1=0, \\
d_{l} R_{x}+e_{l} R_{y}+f_{l} R_{z}=0 . \tag{7}
\end{array}
$$

Solving Coplanarity Constraints (Math)

- Put together all constraints to form a system of linear equations

$$
\begin{equation*}
s_{k, l}\left(a_{k}-d_{l}\right)+t_{k, l}\left(b_{k}-e_{l}\right)-\left(c_{k}-f_{l}\right)=0 \tag{3}
\end{equation*}
$$

$$
\begin{gather*}
a_{k} P_{x}+b_{k} P_{y}+c_{k} P_{z}+1=0, \tag{4}\\
a_{k} Q_{x}+b_{k} Q_{y}+c_{k} Q_{z}=0 . \tag{5}\\
d_{l} P_{x}+e_{l} P_{y}+f_{l} P_{z}+1=0, \tag{6}\\
d_{l} R_{x}+e_{l} R_{y}+f_{l} R_{z}=0 . \tag{7}
\end{gather*}
$$

Highlighted in green: Unknown coefficients that we wish to find.

Solving Coplanarity Constraints (Math)

- Put together all constraints to form a system of linear equations

$$
\begin{equation*}
s_{k, l}\left(a_{k}-d_{l}\right)+t_{k, l}\left(b_{k}-e_{l}\right)-\left(c_{k}-f_{l}\right)=0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
a_{k} P_{x}+b_{k} P_{y}+c_{k} P_{z}+1=0 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
a_{k} Q_{x}+b_{k} Q_{y}+c_{k} Q_{z}=0 \tag{5}
\end{equation*}
$$

$$
\begin{array}{r}
d_{l} P_{x}+e_{l} P_{y}+f_{l} P_{z}+1=0, \\
d_{l} R_{x}+e_{l} R_{y}+f_{l} R_{z}=0 . \tag{7}
\end{array}
$$

$\mathbf{M x}=\mathbf{b}$

$$
\begin{gathered}
\mathbf{x}=\left(a_{1}, b_{1}, c_{1}, \cdots, a_{m}, b_{m}, c_{m}, \cdots, d_{1}, e_{1}, f_{1}, \cdots, d_{n}, e_{n}, f_{n}\right)^{t} \\
m=\# \text { of UVPPs }, \quad \mathrm{n}=\# \text { of UHPPs }
\end{gathered}
$$

Determining Ambiguity (More Math)

Fig. 5 1-DOF indeterminacy similar to scaling ambiguity.

Determining Ambiguity (More Math)

- Calculate the ambiguity by finding a specific correspondence from k-th UVPP to the i-th CVPP.

Determining Ambiguity (More Math)

- Minimize the error function $E(i)$ where

$$
\mathrm{E}_{\mathrm{k}}(\mathrm{i})=\text { Error between } \mathrm{v}_{\mathrm{k}}(\mathrm{UVPP}) \text { and } \mathrm{V}_{\mathrm{i}}(\mathrm{CVPP})
$$

$$
\begin{aligned}
E_{k^{\prime}}\left(i^{\prime}\right) & \equiv \sum_{k=1}^{m} \min _{i=1, \ldots, M}\left\{D\left(\mathbf{v}_{k}\left(k^{\prime}, i^{\prime}\right), \mathbf{V}_{i}\right)\right\}^{2} \\
& +\sum_{l=1}^{n} \min _{j=1, \ldots, N}\left\{D\left(\mathbf{h}_{l}\left(k^{\prime}, i^{\prime}\right), \mathbf{H}_{j}\right)\right\}^{2},
\end{aligned}
$$

and

Angle between two planes V_{k} and V_{i}

$$
i_{\min }^{\prime} \equiv \arg \min _{i^{\prime}} E_{k^{\prime}}\left(i^{\prime}\right)
$$

Determining Ambiguity (More Math)

- Knowing the optimum correspondence, ambiguity is solved.

Given v_{k} (UVPP) and V_{i} (CVPP) correspondences and h_{i} (UHPP) and H_{i} (CHPP) correspondences

3D position of intersection of v_{k} and h_{1}

Repeat for all intersections

Results

- Setup

il

Results

- Projected grid pattern and detected VPC and HPC

Results

Close-up of reconstructed shape

Results

- Reconstructed shape
- Error - RMS error from ground truth $=0.52 \mathrm{~mm}$

Results

reconstruction

textured with hole-filling

Discussion

- Positives
- Very relevant to Robo-ELF project (might be an alternative to current passive stereo approach)
- Robustness and efficiency of the algorithm (~ 1.6 seconds)
- Single frame
- Thorough mathematical derivations
- Helpful figures
- Negatives
- No description of the calibration procedure
- Algorithm is heavily dependent on calibration

Reference

H. Kawasaki, R. Furukawa, R. Sagawa, Y. Yagi. Dynamic Scene Shape Reconstruction Using a Single Structured Light Pattern. Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on 18.
H. Kawasaki, R. Furukawa, R. Sagawa, Y. Yagi. Shape from Grid Pattern Based on Coplanarity Constraints for One-shot canning. IPSJ Transactions on Computer Vision and Applications 2009. Vol. 1, 139-157

Questions?

