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Abstract

Blood perfusion can be used as an indicator to assess the healing
of a chronic wound. The current gold standard, LDI, is expensive
and relatively inaccessible. In this paper we present an integrated
software-and-hardware solution that is able to classify areas of the
patient’s hand as having low or high perfusion, using a standard phone
video and infrared image as inputs. Our solution is able to produce
accurate classifications for a two-class system distinguishing between
high and medium perfusion from low perfusion however it provides
poor classifications when attempting to classify a three-class system
of low, medium, and high perfusion levels. We conclude that such
a software solution might replace LDI in the foreseeable future but
requires further testing and tuning for now.

1 Introduction

The goal of our project is to develop an integrated software-and-hardware tool
that allows a clinician to use a mobile device to extract a usable metric that
assesses local blood flow. Measures of local blood flow (perfusion) can help
characterize healing of chronic wounds and assist physicians in developing
appropriate treatment plans for patients. Currently laser doppler imaging
(LDI) is the standard method of assessing perfusion, but it is often expensive
and inaccessible. Consequentially, wound prognosis is often poor in quality
and can necessitate skin grafts, amputation of the limb or even death.

The basis of our tool relies on the fact that skin color changes subtly
when blood perfuses the tissue beneath it. This would normally be too
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subtle of a change for the human eye to perceive, however using a recent
technique developed at MIT [4], Eulerian Video Magnification, these color
changes become more pronounced and quantifiable. Previous applications of
this technique include using this skin color amplification to measure heart
rate from a video of the face.

In addition to color amplified mobile phone captured video, thermal in-
frared imaging (via smartphone sensor attachment) is also studied as a usable
metric, as blood flow has been shown to correlate with increased temperature
[3]. These metrics are then used to teach a machine learning algorithm that
will classify perfusion into relative bins. The details of the algorithm will be
outlined in our methods sections below.

2 Methods

Our experimental protocol first and foremost relied on the collection of
ground truth LDI data with corresponding iPhone captured video and thermal-
infrared data (captured using the FLIR ONE iPhone attachment). All data
was collected of the hands of subjects, as they were the easiest part of the
body to stably and consistently take videos of. As access to laser doppler
imaging was costly and time-limited (demonstrating the need for a more ac-
cessible solution), we mimicked different blood flow conditions during each
data collection session so as to limit the number of test subjects needed as
well as the number of sessions needed, but while maintaining variation of
data.

To this end, we used a simple manual sphygmomanometer at a low (0 mm
Hg), medium (60 mm Hg), and high pressure (120 mm Hg) to emulate good,
medium, and poor perfusion respectively. Between each trial the arm was
given time to rest and return to regular flow to ensure consistent conditions.

Each trial consisted of taking the pulse of the subject using a pulse oxime-
ter, inflating the blood pressure cuff to the desired pressure, letting the flow
stabilize for a minute, taking the thermal-infrared image, a ten second video,
and then letting the LDI scan the hand. Following this, the collected data
was analyzed and used to teach our algorithm using the techniques described
in the following subsections.
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2.1 Eulerian Video Magnification

The technique used to process the raw iPhone collected videos was Eulerian
Video Magnification (EVM), an algorithm whose developers claim can “re-
veal subtle changes in the world.” [4] Specifically, it was designed to amplify
motion and color change in videos.

One of the proposed applications of this technique was to use the amplified
color changes of the skin caused by underlying blood flow to determine a
subject’s heart rate [1]. We validated this application first before moving
on to trying to apply it to the problem of perfusion assessment and found
that while our results were not as accurate as the results described by the
developers [4], they were significant enough that we felt it validated that
particular application.

Thus using a similar approach, we applied the EVM algorithm to all of
our input videos, with the same set of parameters that we found optimal for
isolating heart beat, and then extracted metrics such as average intensity,
change in intensity over time, and rate of changing intensity, on a section by
section (each section being five by five pixels) basis. To focus on the most
meaningful data points and consistently compare how they changed with
increased sphygmomanometer pressure, we cropped each input video into
five separate videos, each featuring a single fingertip. With heart rate, only
the time between peak intensities was important, but for blood perfusion
there are other significant factors at play. How we determined which metrics
were the most related to perfusion will be discussed in the next section.

2.2 Support Vector Machine

A support vector machine (SVM) is a supervised learning technique that is
able to define a separating hyperplane between two distinct classes of data.
An SVM must first be “trained” on hand-labelled data, from which it is
able to identify patterns in the feature set that help it form the separating
hyperplane. It can then be used to classify novel data using the features
provided to it. For our purposes, we use SVMs to classify or bin areas of
a patient’s hand as having low, medium or high perfusion using features
extracted from EVM processed videos of the hand.
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2.2.1 Features

For the red, green and blue channels of the video some of the features we
used include, rate of change of intensity, dominant frequency as given by a
fast Fourier transform, average peak distance, and average distance between
zero crossings. We also used the intensity from a gray-scale infrared image
taken using the FLIR ONE attachment for the iPhone. A full list of these
features can be found in our README. In addition to this, we used principal
component analysis (PCA) to identify the most information rich features i.e.
features that account for the most variability in our data. PCA is generally
used on high dimensional feature sets to reduce computation time, and we
thought it would be interesting to see how it would affect our SVM. In this
paper, we use PCA to identify the 1, 10, 20, 30, 40, 50 and 60 (of a total of 64)
of the most important features to train our SVM and analyze the tradeoff
between accuracy and speed. We also created plots of the distribution of
features across the whole training data set to enable us to manually validate
how important a feature might be based on eyeballing the variation/similarity
seen between class labels.

2.2.2 Multi-class SVM

SVMs are traditionally binary classifiers. In order to perform a low, medium
and high classification as described above, we used a one-versus-rest [2] tech-
nique. This involved modelling three separate SVMs, one for each class.
Each of these SVMs provides a score indicating the confidence with which
an example can be said to belong to one class over the others. The class that
scores the highest in this manner, is considered to be the final classification
of this example.

2.2.3 Two-class SVM

Preliminary results from our multi-class SVM indicated to us that a 3-class
system of low, medium, and high perfusion might be infeasible. As an alter-
native, we reduced the classification problem to one with two classes. This
can be achieved by considering high and medium labels as belonging to one
class and distinguishing them from low perfusion or alternatively consider-
ing low and medium labels as one class and distinguishing them from high
perfusion. The results of both these methods are presented here.
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2.2.4 EVM vs Non-EVM

Towards the end our project, we also decided to build an SVM trained using
standard video data rather than pre-processing it with EVM. We were curious
to see just how much of an impact EVM had on our classifier.

2.2.5 Training and Testing

As confirmed by the LDI ground truth, pressures of 0, 60, and 120 mm Hg
do indeed correspond to low, medium and high perfusion. This allowed us to
make the claim that any region of the hand in iPhone videos taken at these
applied pressures can be labelled as low, medium or high accordingly. We
used a combination of data obtained from Yvonne and Rohit’s fingertips (as
the fingers were regions that showed highest variability in perfusion between
pressures) as training data. In addition to the tuning features used as talked
about earlier, we also experimented with three different kernels - radial, lin-
ear, polynomial. We used 10-fold cross validation to assess the performance
of our SVM.

Figure 1: Development Pipeline
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3 Results

Figure 2: Results of running an SVM with 3 different kernels and 3 different
class divisions. In addition, comparison with running one particular SVM
kernel configuration on videos not processed using SVM

(a) ’High Perfusion’ Hand (0 mmHg) (b) ’Medium Perfusion’ Hand (60 mmHg)

Figure 3: Our trained SVM’s output when run on the same hand under two
different pressures (white - high perfusion, grey - medium/low perfusion)
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3.1 Feature Selection

Figure 4: Results of experimenting with PCA and restricting the number of
features used

(a) Median Red Channel Intensity (b) Max Red Channel Zero Crossing

Figure 5: Distribution of the Values of two features over the training data
(0, 1, and 2 are the labels given to low, medium, and high respectively)
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4 Discussion

4.1 Class Division

As can be seen in figure 2 extremely poor classification accuracy was achieved
when using a 3-class system. The slightly higher accuracy achieved by the
radial classifier suggests to us that the 3-class system feature space is not
linearly separable and thus explains the poor performance of the linear and
polynomial classifiers. When we use either of the 2-class systems described
in the previous section, the accuracy drastically increases as seen again in
figure 2. Thus, applying such a simplification to the problem, made for a
much “nicer” feature space that was significantly easier to separate. The
highest accuracies were achieved when using the 2-class system that used the
same label for the medium and low perfusion classes. This is an encourag-
ing result when considering the implications of our problem simplification.
The 2-class system described above better describes a distinction between a
normal patient (high perfusion) and a patient with a chronic wound and ill-
healing underlying blood vessels (medium/low perfusion). The other 2-class
system on the other hand, wherein the same label was given to high and
medium perfusions, might simply describe the difference between a human
being (high/medium perfusion) and an inanimate object (low perfusion). Re-
sults of an SVM trained under the former 2-class system (medium and low
perfusion in one class) can be seen in figures 3a and 3b.

4.2 Kernel Selection

As mentioned earlier, the radial classifier performed better than the linear
and polynomial ones for the 3-class system due to the feature space being
linearly inseparable. For the 2-class systems however, the linear and polyno-
mial classifiers were able to achieve the same or higher accuracies. In the case
where high and medium perfusions were given the same label, the polynomial
classifier obtained a significantly higher accuracy than the linear one. While
this may seem like a favourable result, this may be caused by the polynomial
classifier overfitting the data. Hence, we concluded that the linear classifier
may be the most suitable and consistent for our purposes.
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4.3 Feature Selection

As with any data set, there are features that seem to be more important than
others. Upon manual examination of plots such as the ones seen in figures
5a and 5b, it is easy to see why - some features are just too similar across all
three classes while some are similar between two classes but different from
the third (the latter case is what makes classification accuracy better for 2-
class systems). There were no features that were distinct among all three of
our classes, which may be a reason why our 3-class classifier’s performance
is so poor. In addition to manual examination, we also used PCA to pick
out important features in our data. Most of the features obtained through
PCA’s dimensionality reduction corresponded to features that we ourselves
had identified through manual examination, which is an encouraging result.
The results of our experiments with PCA (shown in figure 4) demonstrate
the tradeoff between run time and accuracy. With our current feature set we
found the run time to be acceptable even without PCA reduction; however,
it is possible that in a less developed country computational power might not
be up to par and figure 4 helps to identify a happy medium between speed
and accuracy.

4.4 EVM vs Non-EVM

As discussed earlier, an important step in our pipeline was to process our
videos using EVM. We believed that this would amplify the effects of the
features that we feed to our SVM and improve classification accuracy. As
seen in figure 2 however, this is clearly not the case. The results of our
classification are very comparable for both non-EVM and EVM processed
data. When we looked through plots similar to those seen in figures 5a and
5b, we concluded that while EVM is amplifying the absolute values of our
data, it is not in fact, affecting the relative difference of the features between
our class labels. Thus, our SVMs identify similar features in both sets of
data as being important and result in similar classifications.

5 Conclusions

There are promising results for two class classification, especially between
cases of high-to-medium perfusion versus low perfusion, but there is still
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significant work needed to tune our algorithm for three-class classification or
better.

Our experimentation with Principal Component Analysis (PCA) showed
that it resulted in faster classification at the cost of slightly lower accuracies
in general, as expected. It also showed that no one feature was enough to
distinguish between perfusion levels.

We were, however, unable to show a significant advantage in using EVM
to process the videos compared to just using the original video, which may be
a favorable result, because it implies that the final product could potentially
be less computationally intensive than previously projected.

6 Management Summary

Here we present a summary of the management of our project, including
division of labor, goals we planned to achieve, and what we were actually
able to achieve.

6.1 Management Plan

Azwad was in charge of perfusion metric extraction, input-to-classifier pipeline
development, and statistical analysis.

Rohit was in charge of data collection, SVM design and implementation,
and SVM performance assessment.

Yvonne was in charge of pre-processing of video and image data, front
end development, and source code control.

6.2 Planned Deliverables

At the very minimum, we were to provide proof or disproof of EVM as a
means of characterizing perfusion. We expected to get this done by 03/02
and move on to building a classifier that would utilize EVM data (if found
to be feasible) to classify areas in a video as having low, medium or high
perfusion. If EVM did not show promising results, we were to integrate
a single point laser doppler system into our solution to provide additional
data points that would aid our classifier. We projected that this would be
completed by 04/12, leaving us with time to work towards our maximum
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deliverable, which was to transfer our solution from MATLAB to a mobile
platform and also perform some pre processing in order to stabilize the video.

6.3 Final Deliverables

Due to the inaccessibility of the LDI, there were significant delays in obtaining
data that we could use for correlation with EVM. We also dropped the idea
of using a single point laser doppler due to limited market availability and
unexpectedly high costs associated with acquiring one, going against the
principle of this being a more accessible alternative to LDI. Despite this, our
work has culminated in a relatively streamlined process of video/IR data
collection using a smart phone, followed by EVM processing and the final
classification (performed by an SVM) of the region of interest, output on a
computer.

6.4 Future Direction

The current version of our tool runs in a MATLAB environment, which made
it easier for us to prototype and test ideas. Moving forward however, we hope
to convert the code base from MATLAB to one that is executable on mobile
platforms, making our solution truly mobile. We would also like to be able
to include real chronic wound data into our analysis to see how well our
hypothesis holds up in the real world.

6.5 Lessons Learned

Correlations obtained through image and video processing require very pre-
cise data collection or advanced image stabilization that might not always be
feasible in a clinical setting. We also realized that having well documented
code right from the start can save on a lot effort later on in the project. And
finally, better communication with our mentors might have alleviated several
key issues we were facing both in terms of dependencies and overall direction
of the project at a much earlier stage.

7 Technical Appendix

Here is a link to our repository - https://bitbucket.org/yjiang23/cisperfusion
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