Eulerian Video Magnification
for Revealing Subtle Changes in the World

Hao-Yu Wu, Michael Rubinstein, Eugene Shih, John Guttag,
Frédo Durand, William T. Freeman

Yvonne Jiang
Outline

• Project Recap
• Background
• Overview of Methods
• Summary of Findings
• Impact/Relevance
• Critique
• Questions/Comments
Project Recap

Mobile Perfusion Analysis - Generate an integrated software-and-hardware solution that allows a clinician to extract a usable metric assessing local blood flow using images/video captured via mobile device.
Background

- What is ‘Eulerian’ Video magnification?
 - Eulerian vs Lagrangian specification of fluid flow fields
 - Eulerian: observations at fixed points.
 - Lagrangian: observation by tracking.
Overview of Methods
Discussion of Findings

Overall: No objective/quantitative overall results, but subjectively observed magnifications that appeared correct and matched ground truths when available (pulse, guitar string vibrations, SLR camera mirror flips)

Lagrangian
- Better for enhancing motion of fine point features, larger amplification factors
- Sensitive to increases in spatial noise

Eulerian
- Better for smoother structures and small amplifications
- Capable of color amplification
- For small amplifications, “strikes a better balance between performance and efficiency”
Discussion of Findings (cont’d)

(b) Error as function of σ and α, Spatiotemporal noise

(c) Error as function of σ and α, Spatial noise only
Impact/Relevance

- Much simpler and less computationally intensive method to amplify small changes in real world videos.
- Single framework that can be used to amplify both spatial motion and purely temporal changes (color).
- No-contact pulse measurement.
- Potentially a more accessible measure of local blood flow (perfusion), which can help characterize healing of chronic wounds and assist physicians in developing appropriate treatment plans for patients.
Critique

Good things
- Theoretical and analytical comparison of EVM and Lagrangian based methods
- Very thorough explanation of theoretical basis
- Enough detail (and web-based resources) to easily replicate experiments

Not-So-Good things
- Lack of empirical evidence to substantiate claims
 - Analytical comparison with ‘ground truth’ (for pulse, etc)
 - Maybe include experimentation with program parameters on various inputs
- Did not discuss effects of lighting/unstable video/other non-ideal settings
- Few applications mentioned
Questions/Comments?