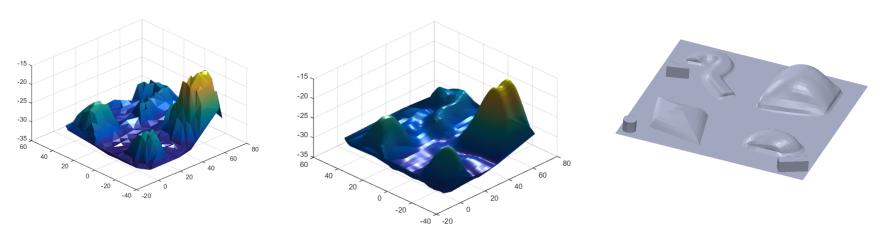


Seminar Presentation:

Active Data Selection For Gaussian Process Regression

Nate Schambach Group 10


Mentors: Prof. Kobilarov, Prof. Taylor, Preetham Chalasani

Optimized Tissue Reconstruction

Geometry reconstruction of tissue using minimal number of points.

Presentation Outline

Background
Paper and Motivation
Active Data Selection
Test Point Rejection
Thoughts

Thoughts

Some GPR Background

- Gaussian Process
 - A collection of random variables that have joint gaussian distributions

$$P(t|C,x_n) = \frac{1}{Z} \exp\left(-\frac{1}{2}(t-\mu)^T C^{-1}(t-\mu)\right)$$

Prediction:

$$\hat{y}(\tilde{x}) = \mathbf{k}(\tilde{x}) \mathbf{C}_N^{-1} \mathbf{t}$$

$$\sigma_{\hat{y}}^2(\tilde{x}) = C(\tilde{x}, \tilde{x}) - \mathbf{k}(\tilde{x}) \mathbf{C}_N^{-1} \mathbf{k}(\tilde{x})$$

Paper Selection

- Seo, S., Wallat, M., Graepel, T., Obermayer, K., Gaussian Process Regression: Active Data Selection and Test Point Rejection. Department of Computer Science, Technical University of Berlin, 2000.
- Project goal: Accurate And Efficient Tissue Reconstruction, paper helps us choose the fewest points to palpate.

Background Paper and Motivations Active Learning Test Point Rejection Thoughts

The Problem:

- Not all points are created equal.
 - Which point will give us the most information
 - Should some points be rejected?

Key Results:

Minimization of Average
Variance drastically
accelerates learning
Throwing out points also
accelerates learning but less
so without an accurate
model

Active Learning McKay (ALM)

Select X points to predict values for.

Calculate their expected value and variances.

Choose point with maximum variance to sample next.

Active Learning Cohn (ALC)

Minimization of Generalization Error:

$$E_{MSE} = \sigma_{\hat{y}}^2 + E_x[(E_{\tau}[\hat{y}(x)] - y(x))^2]$$

Compute how the overall variance would change for X points:

$$\mathbf{C}_{N+1} = \begin{bmatrix} \mathbf{C}_{N} & \mathbf{m} \\ \mathbf{m}^{T} & C(\tilde{x}, \tilde{x}) \end{bmatrix} \mathbf{C}_{N+1}^{-1} = \begin{bmatrix} \mathbf{C}_{N}^{-1} + \frac{1}{u} \mathbf{g} \mathbf{g}^{T} & \mathbf{g} \\ \mathbf{g}^{T} & u \end{bmatrix}$$

$$\mathbf{m} = [C(x_{1}, \tilde{x}) \dots C(x_{N}, \tilde{x})] \in \mathbb{R}^{N}$$

$$\mathbf{g} = -u \mathbf{C}_{N}^{-1} \mathbf{m}, \quad \mathbf{u} = (C(x_{N}, \tilde{x}) - \mathbf{m}^{T} \mathbf{C}_{N}^{-1} \mathbf{m})^{-1}$$

Choose the point with the largest change in the overall variance.

$$\Delta \sigma_{\hat{y}(\xi)}^{2}(\tilde{x}) = \sigma_{\hat{y}(\xi)}^{2} - \sigma_{\hat{y}(\xi)}^{2}(\tilde{x}) = \frac{\left(\boldsymbol{k}_{N}\boldsymbol{C}_{N}^{-1}\boldsymbol{m} - C(\tilde{x},\xi)\right)^{2}}{\left(C(\tilde{x},\tilde{x}) - \boldsymbol{m}^{T}\boldsymbol{C}_{N}^{-1}\boldsymbol{m}\right)}$$

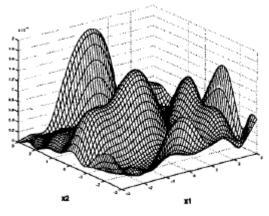
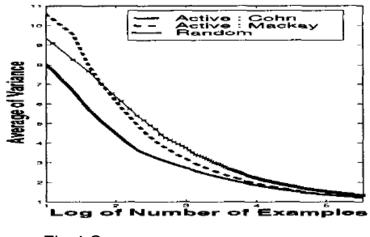
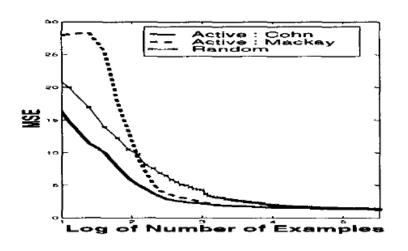
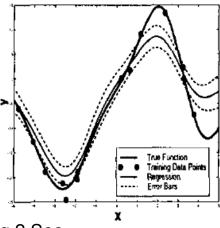
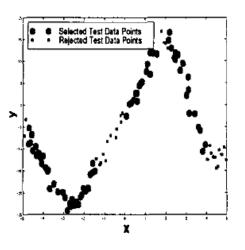



Fig. 1.b. Seo



Active Learning Cohn (ALC)





Test Point Rejection

Compare your predictions at the values you have tested and remove those which are causing a poor fit.

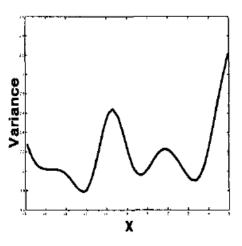


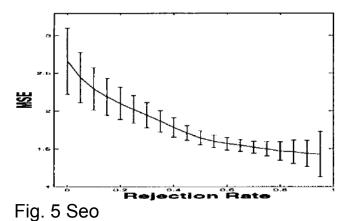
Fig.2 Seo

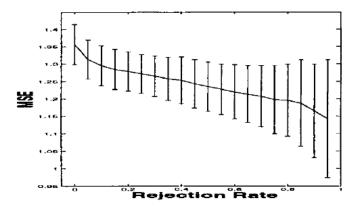
Background

Paper and Motivations

Active Learning

Test Point Rejection


Thoughts



Test Point Rejection

Works much better when the model you are using is closer to the true model.

Final Thoughts

- Test Point Rejection: a welcome but unexpected addition
- ALC is an effective alternative to ALM
- Better evaluation of what is the "best" improvement; Are there other methods than ALC for a different "best" improvement?

Questions?