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1 . Introduction 

      Our project is driven by the fact that there is currently no efficient way to create a 

digital re-modeling of both the geometry and stiffness of a surface. The practical benefit 

of having an efficient method to perform a re-modeling of a surface is for medical 

applications. It would be of great benefit to a surgeon if he or she could accurately and 

quickly learn both the geometry and stiffness of a tissue surface they are going to 

operate on. While there are current methods to develop a model of the geometry, there 

are no efficient and accurate methods to model the stiffness. Stiffness information on a 

tissue surface could provide the surgeon with knowledge on the location of biological 

structures of interest such as tumors or vasculature. It should be clear that the location 

of tumors or vasculature could not be determined from a geometric remodeling alone. 

      In order to address the goal of creating an efficient digital re-modeling of geometry 

and stiffness we started by looking at the more specific question of how to accurately 

reconstruct a surface without any assumptions on the underlying structure. It is 

essential that there are no underlying assumptions made on the structure because in a 

medical setting (especially if modeling a subcutaneous organ) there would be no prior 

information to go off of. Under the guidance of Professor Kobilarov, we choose to use 

force sensor mounted to a cartesian stage to measure surface height and stiffness at 

selected points. Furthering on this, we created a Gaussian Process (GP) algorithm to 
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independently model both geometry and stiffness that uses data from force sensor 

palpations as training points for the GP. It is noteworthy to mention that this is 

fundamentally an exercise in using a finite number of training points (from force sensor 

readings) to interpolate all other points within the tissue range. There are many 

mathematical methods that could be used to achieve this. However, a GP is 

advantageous because every predicted (interpolated) point has an associated 

confidence interval, which is something that a polynomial fitting could not offer.  A 

confidence interval is clearly essential for a medical setting. To clarify how our system 

will work, a first point is initially palpated. Based off of height and stiffness recorded at 

this point, two independent GPs will be created (one for geometry and one for stiffness). 

The next point will then be palpated and both the GPs will be updated in light of the new 

training data. This iterative process will continue for all palpations. 

       Using GPs offers a solution to re-model both geometry and stiffness, however the 

questions of how to select the next point to palpate and how to have the fewest number 

of points to perform this reconstruction still remain. Obviously, the more points palpated, 

the more accurate the model will be. However, this comes at the cost of time which is 

critical in a medical setting. To address this problem, we developed several adaptive 

search algorithms to select the next point to palpate.  In order to use the fewest number 

of points to create an accurate reconstruction, the point selected needs to be the point 

that provides the most information. I am being intentionally vague by saying we want to 

choose the point with the “most information”. This is because a successful search 

algorithm depends on what you are searching for. Therefore, we implemented and 

tested various algorithms that identified their own specific features of the surface. 
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      What I just described is our teams contribution to a project that is being handled by 

Preetham Chalasani, a Hopkins graduate student. Our team only wrote the gaussian 

process algorithm and the adaptive search algorithms. These algorithms were written in 

matlab. The interface between our algorithms and those of the cartesian stage, as well 

as physical control of the cartesian stage was implemented by Preetham. So with 

Preetham’s help, we were able to test the efficacy of our algorithms using a force 

sensor mounted to a cartesian stage, which palpated a phantom. The phantom that we 

used for testing was provided by collaborators at Carnegie Mellon University.    
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2. Gaussian Process  

      Before we discuss our various search algorithms, we thought it would be beneficial 

to describe Gaussian Processes (GPs) for they are essentially the backbone of our 

project. Further, an understanding of GPs is beneficial to understanding the search 

algorithms.  

      A GP is entirely defined through its mean function (m(x)) and covariance function 

(k(x,x’)) such  that:     𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) 

The GP gives rise to an infinite dimensional function.2 This is important because it 

allows the user to determine the value of f at any x. However, for the purpose of using a 

GP as a model, we will convert the GP to a multivariate gaussian distribution.Before we 

discuss specific details, we want to cover some basic notation. Training points are the 

(x,y) locations where palpations have already occurred. Training set values are the 

respective values of each (x,y) location. In the geometry GP, the training set values are 

heights that we have determined through palpation. In the stiffness GP, the training set 

values are stiffnesses that we have determined through palpation. Test set points are 

(x,y) locations that we wish to predict the value at. The values at the test set points are 

called test-set values. The multivariate distribution we will be using is defined by:  

Where y are the values from training points. K is the training set covariance matrix. K* is 

the training-test set covariance matrix. K** is the training-test set covariance matrix. And 

y* are the test set values. y* is the only unknown in the above equation. We will soon 

discuss how to estimate y*. It is also interesting to note that the mean of the multivariate 

gaussian distribution is the zero vector. This is due to, as discussed in the introduction, 

1) 
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we wish to model the surface with no underlying assumptions made on the surface.1,3 

However, if the surface had a known average shape (like a ellipsoid), this could be 

added to the model through altering the mean of the multivariate gaussian.4 

      You may be wondering how the covariance matrices are computed. We used the 

squared exponential covariance matrix to compute the covariance between points. Each 

element is defined by: 

where, for our purposes, x and x’ are two arbitrary (x,y) positions. l is a hyperparameter 

that controls the effect that the distance between two points has on their covariance and 

thus controls the relative “smoothness” of the surface. This was estimated through 

visual inspection. 𝜎𝑓
2  is another hyperparameter and is also the function noise. It scales 

the expected variance between points and can also be estimated through visual 

inspection. l and 𝜎𝑓
2  can be optimized via maximizing the log-likelihood. However, for 

preliminary testing, visual inspection is sufficient. This is because, reasonable 

hyperparameters do drastically not affect next point selection criterium and the GP can 

be re-computed on existing data once hyperparameters are optimized. 𝜎𝑛
2 is a 

hyperparameter that represents signal noise.𝛿(𝑥, 𝑥′)  =  1 if x = x’, else 𝛿(𝑥, 𝑥′)  =  0. 

Signal noise was estimated through variance present in the force sensor.  

     From equation 1, we can determine the distribution of predicted values at test points 

given the values from test points. This is exactly what we are trying to compute. It is: 

2) 

3) 
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And thus we know the predicted values at the test points and the variance at those test 

points: 

And thus we can predict the mean and variance of all points within set of test points.1 

      Before implementing the search algorithms, we tested our GP algorithm by 

palpating the phantom in a uniform 18 by 18 grid that covered the entire phantom. 324 

points is considerably more points to palpate than desired, but we choose to palpate so 

many because this was a preliminary test. This also provides us with a “near ground-

truth” for stiffness. As the there exists a ground truth for the geometry of the phantom, 

but no ground truth for stiffness. 

 As stated above, there does not exist a stiffness ground truth. However from palpating 

many points (as shown in the below reconstruction), we can infer the stiffness is highest 

along a thin wire (not shown in CAD model because it is beneath the surface). In the 

picture of the actual phantom shown on the left, it is the thin red line running through the 

middle. It can be visualized in the CAD model as the bright yellow line. All elevated 

surfaces show the next highest stiffness. And all non-elevated surfaces not along the 

wire show low stiffness.  

Figure 1: (from left to right). The first is an actual image of the phantom used for testing. 

The second picture is a CAD model of the phantom. The last image is a GP 

reconstruction (MSE = .75) after palpating a uniform 18x18 grid on the phantom 

4) 5) 
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3. Search Algorithms/Results 

 

3.1 Overview 

 

When it comes to complex structures, there is no “one size fits all” search algorithm 

which uses the same number of sample points.  One cannot both search for a maximum 

and hope to sample points which reconstruct the best overall model unless the structure 

sampled from is very simple.  However, to address various needs as well as to draw 

comparisons we tested and implemented several different approaches. These 

approaches as well as their results are below. 

 

3.1.2 Choosing the Next Point 

One feature is consistent throughout all of our search algorithms.  When computing the 

next point at which to palpate we first uniformly random sample N points within a box 

centered around the current point.  One of these randomly selected points is then 

selected as the next palpation point.  Random sampling is chosen over a grid selection 

of points due to the large amount of computation which would need to be done for the 

number of points necessary to cover the area with enough resolution.       

 

3. 2 Maximum Search 

 

3.2.1 Algorithm  

This search takes the N points and predicts the expected mean and variance of each 

point using the GP prediction equation:   

The next point chosen is then the point which satisfies the following condition: 
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Where a and b are weighting factors.  While this is very efficient is has several key 

problems: 

1) It is difficult to combine criteria of different units such as height or stiffness 

2) It leads to the discovery of local maxima, at which point the algorithm tends to 

stay indefinitely. 

 

3.2.1 Results 

 

Maximum Height Search 

 

      With enough tuning of the box size to be sampled from and weighting of the 

variance term you can get the algorithm to explore such as in this example, where the 

true maxima is found and others are slightly explored.  However it would still be very 

easy for the algorithm to miss another maxima.  

 

Figure 2: Results from maximum height search. On the left, an image of the reconstruction using 

GPs. This was done with L= 35 mm, variance weight = 20, and mean height weight = 1. The 

MSE was 5.046. On the right, the palpation trajectory 
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Maximum Stiffness Search 

 

 

 

The results here are very interesting because the geometry reconstruction is actually 

quite good.  The reason for this is the low stiffness of the humps and the high relatively 

small area of the stiff area(subcutaneous wire).  The end results are almost a random 

grid with some favoring of the slightly stiffer humps.  Eventually, when the wire is 

discovered the algorithm sticks to it.  However because it is looking for a maximum peak 

it has difficulty exploring the rest of the wire.  In cases where the model is similar to this 

one, where the interesting area is small this algorithm works relatively well. 

 

As demonstrated, the algorithm is very efficient at finding the first maxima it encounters.  

A combatant for this could be a grid or randomly sampled initialization.  The algorithm 

would initially select N points over the surface after which the Maximum search would 

Figure 3: Results from maximum stiffness search. On the left, an image of the reconstruction 

using GPs. This was done with L= 35 mm, variance weight = 4.5, and mean stiffness weight = 1. 

The MSE was 1.521. On the right, the palpation trajectory 
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begin.  For enough exploration, weighting of the variance vs mean values is highly 

dependent on the specific structure itself. 

 

3.3 Dynamic Maximum Search 

 

3.3.1 Algorithm 

This basic adaptation of the Maximum Search algorithm takes the previous factors and 

scales them by the predicted values from the point most recently palpated.  The criteria 

is as below: 

The previous predicted values come from the previous iteration of the algorithm and are 

not recomputed at that point.  They are not recomputed because of the gaussian 

processes nature.  Freshly computed values would result in very low variances, skewing 

the variance term and enhancing the tendency for the algorithm to leave a newly found 

high point.  This tendency is explained in greater detail in the behaviour below. 

 

By scaling the means and variances by the previous predicted variances the algorithm 

maxes the values unitless, allowing for combination of the height and stiffness as a 

criterion as well as drastically reduces the likelihood of getting stuck at a local maxima.  
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The following table describes some of the algorithms key behavior: 

 

Event Mean Event Variance Resulting Behaviour 

High Predicted, Low 
Previous Predicted 

Similar Predicted and 
Previous Predicted 

Search approaches 
Maxima 

Low Predicted, High 
Previous Predicted 

Similar Predicted and 
Previous Predicted 

Favors variance, tendency 
to leave maxima for more 
information 

Similar Predicted and 
Previous Predicted 

High Predicted, Low 
Previous Predicted 

Favors variance, tendency 
to leave overly sampled 
area for more information 

Similar Predicted and 
Previous Predicted 

Low Predicted, High 
Previous Predicted 

Favors means, tendency to 
approach maxima 

Similar Predicted and 
Previous Predicted 

Similar Predicted and 
Previous Predicted 

Favors weighting factors, a 
and b, but essentially the 
same behaviour as a 
random search 

 

This behavior is obviously very promising when the area has all been relatively well 

covered.  But what happens when an area of interest has not been explored yet?  When 

an area has not been explored yet, the search has the opportunity to initially miss the 

area of interest, hitting it once, and then likely jumping away because the mean factor is 

liable to be close to 1.  However upon the next iteration, the mean factor will be lower 

and the variance term will dominate.  In the ideal situation this will encourage the search 

algorithm to return in a similar direction.   

A quadseek algorithm (see 3.4.3) could be argued to be implemented for improving 

overall results.  However as the results by Seo et al. show, ALC is only better than 

selecting the points with high predicted variance when there are few numbers in the 

training set.  For the advantage of simplicity and because areas which are of interest will 
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naturally have more points on them in this algorithm, the advantages of ALC were 

deemed not worth it.   Combination of criteria for stiffness and geometry is done as 

follows: 

 

3.3.2  Results 

100% Weighting on Geometry, 0% Weighting on Stiffness 

 

 

 

 

Figure 4: 100% weighting on geometry, 0 % on stiffnessResults from dynamic maximum 

geometry search. On the left, an image of the reconstruction using GPs. This was done with L= 

35 mm, variance weight = 1, and mean geometry weight = 1. The MSE was 1.1719. On the 

right, the palpation trajectory 

*Some of the geometry is off due to a shift in the phantom during measurement 
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We had our most successful geometry reconstruction using this algorithm with a MSE of 

1.1719. Further, as can be observed, the path was constrained to all four corners of the 

grid. This is exactly what we wanted to occur because the corners are the only locations 

that have height above ground level. What is so great about this algorithm is that, unlike 

the prior searching for max height algorithm, the path did not get stuck on one hump. It 

continuously explored. We were very pleased with this result. 

0% Weighting on Geometry, 100% Weighting on Stiffness 

 

 

 

The result from this algorithm is also very interesting. The MSE is quite large, but don’t 

let that detour you. The MSE is from the geometry reconstruction relative to the ground 

truth, and this algorithm focuses on only stiffness. As the stiffest point is along the 

subcutaneous wire (which has no geometry), the path taken was focused around the 

Figure 5: 0% weighting on geometry, 100% on stiffness .Results from dynamic maximum 

stiffness search. On the left, an image of the reconstruction using GPs. This was done with L= 

35 mm, variance weight = 5, and mean stiffness weight = 1. The MSE was 17.84. On the right, 

the palpation trajectory 
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subcutaneous wire (as can be observed by the high density in the middle). The 

algorithm is flawed however in that it did not cover points along the entire length of the 

wire. It only covered a region of the wire that was about a quarter of its entire length and 

did not explore any further regions. This is in part due to the fact that the wire was so 

thin that it was not probable the force sensor would land on it. 

50% Weighting on Geometry, 50% Weighting on Stiffness 

 

 

Of interesting value this dual weighting hit perhaps the most of the wire out of all our 

algorithms. We believe this is because the geometry weighting helped the algorithm 

search away from a local stiffness high point.    

 

The resulting algorithm, retains virtually all of the advantages of max search, mainly 

being ease of implementation and efficiency, while providing the ability to weigh multiple 

Figure 6: 50% weighting on geometry, 50% on stiffness .Results from dynamic maximum 

combination search. On the left, an image of the reconstruction using GPs. This was done with 

L= 35 mm, geometry mean weight = 1, geometry variance weight = 1, stiffness variance weight 

= 5, and mean stiffness weight = 1. The MSE was 2.5412. On the right, the palpation trajectory 
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characteristics in the search at once. As can be observed, the path still explored the 

four corners (that contain interesting geometries), and also explored the center of the 

grid (that had interesting stiffness). We consider this result to be a great success in that 

it was able to seek two different features of the surface. 

 

 

3.4 Maximum Change in Variance Search 

Our most complex searching algorithm. The idea and core algorithm is primarily based 

on the Active Learning Cohn or ALC method as described by Seo, Wallat, Graepel and 

Obermayer.6  In selecting the next palpation point from the N randomly sampled points 

we compute the expected change in variance should we add that point to the training 

set.  In an attempt to encourage selection of palpation points in areas of interest we also 

implemented a dynamic radius, and a an algorithm which we refer to as quad seek 

which is described below.    

. 

3.4.1 Dynamic Radius 

To encourage point selection in an area of high interest, we implemented a dynamically 

changing box size in which to sample points to choose from. The side length is 

calculated as follows: 

 

The behavior is such that if the last point was very similar to the Boring then the Interest 

Factor will be much smaller than 1 and the box will grow.  When a point is very different, 
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then the Interest Factor will be close to 1 and the box size will be close to its minimum 

value. 

 

Boring is the level of the measured value which is the baseline or not of interest to the 

user.  In our testing case where the phantom has a flat base, Boring is set to 0 when 

basing interest of the height.  Previous is the height of the last sampled value and Max 

Difference is the largest expected difference between Boring and an area of interest, or 

in the case of geometry importance on our model, it would be the highest peak.  

Correction Factor is a small fraction used for more control the box size.  Minimum L is 

the minimum side length of the box to sampled in.  This equation for governing the box 

size was chosen because it ensures the box size cannot shrink too small, grows and 

shrinks predictably without the need for more model specific parameters to be chosen 

and is robust.  The key thing to note is that the Max Difference should be estimated 

erring on the side of being overly large so that the box does not shrink when a very 

interesting area is discovered.   

Through this indirect way of encouraging palpation in areas of interest, we open up a 

way for weighting and combining the search for multiple criteria of interest through a 

second Interest Factor.  Namely, stiffness and height as before. 

 

A major drawback of this method is that these parameters require prior knowledge of 

the data set, either through initialization from the user or extracted through an initial grid 

sample.  
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3.4.2 Maximum Change in Variance 

The value of this search algorithm is in producing reconstructions which have low 

variance in the predicted values.  By computing the expected change in variance of the 

potential palpation points we can choose the point which offers the most information to 

the model. The calculations are as follows: 

Where xi is a reference point and x tilde is the potential point to add to the training set.  

To utilize this we predict the change in variance at each potential point should each 

potential point be palpated and choose the point which results in the highest change in 

variance over all the sampled points. 

 

Some pseudocode should help make this more clear: 

 

PotentialPalpations = random(N); 

for i in PotentialPalpations 

{ 

 K_Ns(i) = K_N(PreviousltTrainedPoints, RefPt); 

} 

for i in PotentialPalpations 

{ 

 PotentialPoint = i; 

 

 for j in Potential Palpations 

 { 

  RefK_N = K_Ns(j); 

  ChangeInVariances(j) = ChangeInVar(RefPt,PotentialPoint, K_N); 

 } 

 OverallChange = mean(ChangeInVariances); 

} 

 

nextPoint = max(OverallChange); 
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3.4.3 Quadseek 

Our next algorithm we created for this method is the Quadseek.  The idea behind this 

algorithm is that while the Maximum Change in variance may choose the point which 

offers the most information, this point may be an anomaly in an otherwise well covered 

area.  To counter this, we divide the box of potential points into four quadrants.  The 

quadrant with the highest average expected change in variance is then chosen from to 

pick the point with the maximum change in variance.   

Figure 7: A teaching schematic outlining out “quadseek algorithm” 
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3.4.4 Results 

 

Initial Testing on an Image 

 

Here we performed some initial testing on an image.  The image, is of concentration 

gradients within a lake, as you can see the results are semi accurate however they 

varied drastically every time the algorithm was run.  Due to the decent performance on 

some iterations, hoping for better, we proceeded to test it on data that was more 

realistic to our real life model. 

  

Figure 8: Here, we show images of our initial testing (prior to receiving a phantom). We 

performed a GP with the value being pixel density. On the left, the ground truth (image 

used). In the middle, we have the reconstructed image using a GP. On the right, we see the 

path taken along the image (for choosing the next point 
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Toy Data Set:For baseline validation of results of our algorithms we tested on a toy 

data set which we created.  The toy dataset, seen below, was built to resemble the 

phantom in hump size and spacing but with simple normal distributions.  This allows the 

gp to very easily recompute the results and for us to iterate quickly, rather than wait an 

hour to sample a sufficient number of point.  

  

Figure 9: Toy data set plotted 
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We tested our algorithm on this data set with a significant number of variations in 

radiuses, weighting, etc but could never get it to behave the way we wanted.  Below you 

can see a representative path of 150 points. Compare this to the path of our adaptive 

max search algorithm on the same data set, also of 150 points, where you can see just 

how much more efficient the adaptive max search is. It is shown below: 

Similar results were recreated on the phantom, with the Change in Variance Search 

proving little better than a random path search. An additional disadvantage of the 

change in variance search is the very large variations in results from one test to another 

and high sensitivity to hyperparameters. 

Figure 10: Palpation trajectories. On the left, the palpation trajectory of the 

representative path of 150 points. On the right, our adaptive max search algorithm 
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4. Discussion 

 

4.1 Personal Lessons 

It is important, and exciting for us to note that this project was largely a success.  As will 

be noted on in the below management summary, we achieved all of our deliverables 

that we set in our initial project plan presentation (with some minor alterations). Further, 

our team certainly learned a lot. When we started a the beginning of the semester, 

neither of us knew anything about Gaussian Processes. We also had minimal robotics 

experience(CIS1). Now, to discuss the results of our paper. 

 

4.2 Algorithm Choice Recommendations/Future Algorithmic Work   

As noted previously there is no one size fits all algorithm for an optimal search 

trajectory for all models.  This is particularly true when the user wishes to search for 

multiple characteristics such as stiffness and height.  When the structure is very basic or 

initialization can be done nearby the area of interest a simple max search is the best 

option.  However if this is not possible the adaptive max search is the best performing 

algorithm.  The change in variance algorithm, is only useful in highly complex structures.  

If this were the case though, we would recommend removing the dynamic radius 

because of the required initialization. 

An additional recommendation we have is to perform a sparse palpation grid 

initialization of the structure before running any of our algorithms.  We expect this to 

drastically improve the results of all our algorithms although our previous 

recommendations on choice still hold.  
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4.3 Limits of the Approach 

 

4.3.1 Gaussian Process 

Apart from the search algorithms limits there is also inherent limits within the 

gaussian process.  Because it models structures as gaussians, it does a very poor job 

modeling a structure such as a thin wire without sampling almost all of the wire.  This is 

a problem when searching because if the wire is missed by even a small amount the gp 

will predict that there is no structure in the near vicinity.  Of course, you could change 

the length scale to be smaller but then when the wire is palpated, future predictions will 

still predict that there is no nearby structure anyway.  Additionally, this would not work 

for varied structures within a tissue.  Again, one size fits all, is a very difficult task.  

The only way to get around such problems is by limiting the box from which the 

palpated points are chosen to a very small area.  This though will take a very long time 

to sample and effectively turns the sampling into a grid search in the number of points 

taken or could, worse miss wide swaths of data because of its limited view. 

 

4.3.2 Stiffness and Surface Calculations 

The approach is also limited in the assumption that the stiffness is linear.  A 

better approach would not have this approximation.   

There is also a limit in where the stiffness and surface geometry are computed as 

a depth of the true surface.  For example, a tumor might reside 3mm below the surface, 

here the stiffness would be much higher than the stiffness above it. Combining 

underlying structures and stiffness would need a very advanced modeling technique but 

averaging stiffness without incorporating this could result in misclassifying stiffnesses 

when their average stiffness as a function of depth is similar.   
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5. Management Summary 

      At the beginning of the semester, we defined our deliverables as follows. Our 

minimum deliverable with a geometry reconstruction of a sample image using Gaussian 

process and cross entropy optimization (to be used to select the next point).5 Our 

expected deliverable was a geometry reconstruction of sample tissue with gaussian 

process and cross entropy optimization. And our maximum deliverable was to use the 

geometry reconstruction of the sample tissue, create a model of stiffness within the 

tissue. The main difference between these preliminary deliverables and what we 

actually achieved was we decided not to use cross entropy optimization to select the 

next point. This was under the guidance of our mentor Dr. Kobilarov. Instead, as we 

have shown, we have implemented various other ways to select the next point. Further, 

we also differed from our initial maximum deliverable slightly. While we did accomplish a 

model of stiffness, the stiffness model was independent of geometry. We choose to do 

this because we made the assumption that stiffness and geometry are, in fact, 

independent of one another (which is a reasonable assumption to make if the surface is 

human tissue). 

     There are several things that can hopefully be accomplished in the future. The first 

would be to test our current system on other stiffness distributions. Currently, the 

phantom we used had its main stiffness above the subcutaneous wire. It would be 

interesting if the stiffness was more circular in shape (as opposed to a line). We believe 

our search algorithms would perform much better in this case.  Further, a circular stiff 

region has several implications in biology such as the shape of a tumor. Another aspect 

to look at in the future would be to assume stiffness to be a non-linear model. In our 

model, we assumed stiffness obeyed Hooke’s law (ie stiffness was proportional to 
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depth). However, this is not necessarily the case. The last thing to look at in the future 

would be to implement the GP with co-dependent outputs. So no longer making the 

assumption that stiffness and geometry are independent. 

     We certainly learned a lot. Firstly, while GPs are versatile, they do have their limits in 

terms of what they can model. They work much better for circular shapes, as opposed 

to lines (like the subcutaneous wire). Secondly, adaptive searching is no small feat 

whatsoever. Initially, our search algorithms did not work as we planned whatsoever. 

Also, as can be observed by our maximum change in variance search algorithm, 

algorithms that work well on simulated data, may not perform perfectly in practice.  

    As we were only a group of two, we work together for the most part. Major 

contributions by Ben were Quad-Seek (3.4.3), the max search (for height and stiffness). 

Major contributions by Nate were maximum change in variance (3.4.2) and the adaptive 

maximum search. 
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6. Technical Appendices 

       All of our code can be found in a zip file on our wiki page. Feel free to look! 

We will now present a brief user’s manual to all of the code. As we did not construct the 

codes that controlled the robot (those were written by Preetham), we will not inlcude the 

documentation. However, if one desires to access these codes speak with Preetham. 

They are well documented on GitLab. 

 

The gp object used throughout the code consists of the following. 

 

gp.sf - function noise 

gp.sn - signal noise 

gp.l - length scale  

gp.xs - independent points for training set 

gp.sf - dependent points for training set  

gp.a - inverse of training set covariance matrix, computed and saved for efficiency 

 

gp_test - A driver script for testing the algorithms on imported data, not for use with the 

cartesian stage 

 

gp_online_train:  Driver for performing the search and creating the gaussian process.  

Inputs:  gp, gpk, and Data.  gp and gpk should take the form of gp.sf, gp.sn and gp.L.     

Output: gp, gpk 

 

gp_train: Trains the gaussian process on the data within it.  Inputs: gp, Output: gp 

 

gp_train_update:  For retraining the data set when one point has been added to the gp 

since it was last trained. Input: gp, Output: gp 

 

gp_pickNext_max_combo: This is used to implement the dynamic max search 

(section 3.3) 

Inputs: The gaussian process for geometry (gp) and the gaussian process object for 

stiffness (gpk) 

Outputs: The selected point (point) 

 

gp_pickNextALC_Single.m: This is used to implement the search algorithm described 

in section 3.4. 

Inputs: The gaussian process for geometry (gp) and the gaussian process object for 

stiffness (gpk) 

Outputs: The selected point (point) 

 

ComputeK.m: Computes the stiffness of a given point 
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Inputs: Force (f), depth (z), and surface height (z0) 

Outputs: Stiffness 

 

gp_sqexp.m: Is used to compute an element of the the covariance matrix. 

Inputs: The gp object that contains the covariance matrix(gp), the two points that the covariance 

is being computed between (xa and xb) 

Outputs: The computed covariance element (f) 

 

createStiffnessModel.m: This creates a sample stiffness model that can be used for simulation 

testing purposes 

Outputs: After this script has run, it saves the stiffness model in the object SIM_data.mat 

 

PlotPhysicalResultsColorMap.m: This function allows you to plot your GPs for geometry and 

stiffness in one graph for user-specified test points 

Inputs: The geometry GP (gp), the stiffness GP (gpk), and the number of points you desire to 

plot (resolution) 

Output: The image (called reconstruction) 

 

We also included some sample data: 

GridData.mat: Data recorded from an experiment that sampled from a uniformly sized 18X18  

gridSample.mat: This is the same data from GridData.mat, yet it includes every single force 

value that was recorded during the experiment 

 

ReTune - A script for importing data from the robot, adjusting hyperparameters and running 

PlotPhysicalResultsColorMap 
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