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Abstract—This paper investigates two fundamental problems in computer vision: contour detection and image segmentation. We

present state-of-the-art algorithms for both of these tasks. Our contour detector combines multiple local cues into a globalization

framework based on spectral clustering. Our segmentation algorithm consists of generic machinery for transforming the output of any

contour detector into a hierarchical region tree. In this manner, we reduce the problem of image segmentation to that of contour

detection. Extensive experimental evaluation demonstrates that both our contour detection and segmentation methods significantly

outperform competing algorithms. The automatically generated hierarchical segmentations can be interactively refined by user-

specified annotations. Computation at multiple image resolutions provides a means of coupling our system to recognition applications.

Index Terms—Contour detection, image segmentation, computer vision.
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1 INTRODUCTION

THIS paper presents a unified approach to contour
detection and image segmentation. Contributions

include:

. a high-performance contour detector, combining
local and global image information,

. a method to transform any contour signal into a
hierarchy of regions while preserving contour quality,

. extensive quantitative evaluation and the release of a
new annotated data set.

Figs. 1 and 2 summarize our main results. The two figures
represent the evaluation of multiple contour detection (Fig. 1)
and image segmentation (Fig. 2) algorithms on the Berkeley
Segmentation Data Set (BSDS300) [1], using the precision-
recall framework introduced in [2]. This benchmark operates
by comparing machine generated contours to human
ground-truth data (Fig. 3) and allows evaluation of segmen-
tations in the same framework by regarding region bound-
aries as contours.

Especially noteworthy in Fig. 1 is the contour detector
gPb, which compares favorably with other leading techni-
ques, providing equal or better precision for most choices of
recall. In Fig. 2, gPb-owt-ucm provides universally better
performance than alternative segmentation algorithms. We
introduced the gPb and gPb-owt-ucm algorithms in [3] and

[4], respectively. This paper offers comprehensive versions
of these algorithms, motivation behind their design, and
additional experiments which support our basic claims.

We begin with a review of the extensive literature on
contour detection and image segmentation in Section 2.

Section 3 covers the development of the gPb contour
detector. We couple multiscale local brightness, color, and
texture cues to a powerful globalization framework using
spectral clustering. The local cues, computed by applying
oriented gradient operators at every location in the image,
define an affinity matrix representing the similarity
between pixels. From this matrix, we derive a generalized
eigenproblem and solve for a fixed number of eigenvectors
which encode contour information. Using a classifier to
recombine this signal with the local cues, we obtain a large
improvement over alternative globalization schemes built
on top of similar cues.

To produce high-quality image segmentations, we link
this contour detector with a generic grouping algorithm
described in Section 4 and consisting of two steps. First, we
introduce a new image transformation called the Oriented
Watershed Transform for constructing a set of initial
regions from an oriented contour signal. Second, using an
agglomerative clustering procedure, we form these regions
into a hierarchy which can be represented by an Ultrametric
Contour Map, the real-valued image obtained by weighting
each boundary by its scale of disappearance. We provide
experiments on the BSDS300 as well as the BSDS500, a
superset newly released here.

Although the precision-recall framework [2] has found
widespread use for evaluating contour detectors, consider-
able effort has also gone into developing metrics to directly
measure the quality of regions produced by segmentation
algorithms. Noteworthy examples include the Probabilistic
Rand Index, introduced in this context by [5], the Variation
of Information [6], [7], and the Segmentation Covering
criterion used in the PASCAL challenge [8]. We consider all
of these metrics and demonstrate that gPb-owt-ucm delivers
an across-the-board improvement over existing algorithms.
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Sections 5 and 6 explore ways of connecting our purely

bottom-up contour and segmentation machinery to sources

of top-down knowledge. In Section 5, this knowledge

source is a human. Our hierarchical region trees serve as

a natural starting point for interactive segmentation. With

minimal annotation, a user can correct errors in the

automatic segmentation and pull out objects of interest

from the image. In Section 6, we target top-down object
detection algorithms and show how to create multiscale
contour and region output tailored to match the scales of
interest to the object detector.

Though much remains to be done to take full advantage
of segmentation as an intermediate processing layer, recent
work has produced payoffs from this endeavor [9], [10],
[11], [12], [13]. In particular, our gPb-owt-ucm segmentation
algorithm has found use in optical flow [14] and object
recognition [15], [16] applications.

2 PREVIOUS WORK

The problems of contour detection and segmentation are
related, but not identical. In general, contour detectors offer
no guarantee that they will produce closed contours and
hence do not necessarily provide a partition of the image
into regions. But one can always recover closed contours
from regions in the form of their boundaries. As an
accomplishment here, Section 4 shows how to do the
reverse and recover regions from a contour detector.
Historically, however, there have been different lines of
approach to these two problems, which we now review.

2.1 Contours

Early approaches to contour detection aim at quantifying
the presence of a boundary at a given image location
through local measurements. The Roberts [17], Sobel [18],
and Prewitt [19] operators detect edges by convolving a
gray-scale image with local derivative filters. Marr and
Hildreth [20] use zero crossings of the Laplacian of
Gaussian operator. The Canny detector [22] also models
edges as sharp discontinuities in the brightness channel,
adding nonmaximum suppression and hysteresis thresh-
olding steps. A richer description can be obtained by
considering the response of the image to a family of filters
of different scales and orientations. An example is the
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Fig. 1. Evaluation of contour detectors on the Berkeley Segmentation
Data Set (BSDS300) Benchmark [2]. Leading contour detection
approaches are ranked according to their maximum F-measure
ð2�Precision�RecallPrecisionþRecallÞ with respect to human ground-truth boundaries. Iso-F
curves are shown in green. Our gPb detector [3] performs significantly
better than other algorithms [2], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28] across almost the entire operating regime. Average
agreement between human subjects is indicated by the green dot.

Fig. 2. Evaluation of segmentation algorithms on the BSDS300
Benchmark. Paired with our gPb contour detector as input, our
hierarchical segmentation algorithm gPb-owt-ucm [4] produces regions
whose boundaries match ground truth better than those produced by
other methods [7], [29], [30], [31], [32], [33], [34], [35].

Fig. 3. Berkeley Segmentation Data Set [1]. Top to Bottom: Image and
ground-truth segment boundaries hand-drawn by three different human
subjects. The BSDS300 consists of 200 training and 100 test images,
each with multiple ground-truth segmentations. The BSDS500 uses the
BSDS300 as training and adds 200 new test images.



Oriented Energy approach [21], [36], [37], which uses
quadrature pairs of even and odd symmetric filters.
Lindeberg [38] proposes a filter-based method with an
automatic-scale selection mechanism.

More recent local approaches take into account color and
texture information and make use of learning techniques for
cue combination [2], [26], [27]. Martin et al. [2] define
gradient operators for brightness, color, and texture chan-
nels, and use them as input to a logistic regression classifier
for predicting edge strength. Rather than rely on such hand-
crafted features, Dollar et al. [27] propose a Boosted Edge
Learning (BEL) algorithm which attempts to learn an edge
classifier in the form of a probabilistic boosting tree [39] from
thousands of simple features computed on image patches.
An advantage of this approach is that it may be possible to
handle cues such as parallelism and completion in the initial
classification stage. Mairal et al. [26] create both generic and
class-specific edge detectors by learning discriminative
sparse representations of local image patches. For each
class, they learn a discriminative dictionary and use the
reconstruction error obtained with each dictionary as feature
input to a final classifier.

The large range of scales at which objects may appear in
the image remains a concern for these modern local
approaches. Ren [28] finds benefit in combining information
from multiple scales of the local operators developed by [2].
Additional localization and relative contrast cues, defined
in terms of the multiscale detector output, are fed to the
boundary classifier. For each scale, the localization cue
captures the distance from a pixel to the nearest peak
response. The relative contrast cue normalizes each pixel in
terms of the local neighborhood.

An orthogonal line of work in contour detection focuses
primarily on another level of processing, globalization, that
utilizes local detector output. The simplest such algorithms
link together high-gradient edge fragments in order to
identify extended, smooth contours [40], [41], [42]. More
advanced globalization stages are the distinguishing char-
acteristics of several of the recent high-performance
methods benchmarked in Fig. 1, including our own, which
share as a common feature their use of the local edge
detection operators of [2].

Ren et al. [23] use the Conditional Random Fields (CRFs)
framework to enforce curvilinear continuity of contours.
They compute a constrained Delaunay triangulation (CDT)
on top of locally detected contours, yielding a graph
consisting of the detected contours along with the new
“completion” edges introduced by the triangulation. The
CDT is scale-invariant and tends to fill short gaps in the
detected contours. By associating a random variable with
each contour and each completion edge, they define a CRF
with edge potentials in terms of detector response and
vertex potentials in terms of junction type and continuation
smoothness. They use loopy belief propagation [43] to
compute expectations.

Felzenszwalb and McAllester [25] use a different strategy
for extracting salient smooth curves from the output of a
local contour detector. They consider the set of short oriented
line segments that connect pixels in the image to their
neighboring pixels. Each such segment is either part of a

curve or is a background segment. They assume that curves
are drawn from a Markov process, the prior distribution on
curves favors few per scene, and detector responses are
conditionally independent given the labeling of line seg-
ments. Finding the optimal line segment labeling then
translates into a general weighted min-cover problem in
which the elements being covered are the line segments
themselves and the objects covering them are drawn from
the set of all possible curves and all possible background line
segments. Since this problem is NP-hard, an approximate
solution is found using a greedy “cost per pixel” heuristic.

Zhu et al. [24] also start with the output of [2] and create
a weighted edgel graph, where the weights measure
directed collinearity between neighboring edgels. They
propose detecting closed topological cycles in this graph
by considering the complex eigenvectors of the normalized
random walk matrix. This procedure extracts both closed
contours and smooth curves, as edgel chains are allowed to
loop back at their termination points.

2.2 Regions

A broad family of approaches to segmentation involves
integrating features such as brightness, color, or texture
over local image patches, and then clustering those features
based on, e.g., fitting mixture models [7], [44], mode-finding
[34], or graph partitioning [32], [45], [46], [47]. Three
algorithms in this category appear to be the most widely
used as sources of image segments in recent applications
due to a combination of reasonable performance and
publicly available implementations.

The graph-based region merging algorithm advocated by
Felzenszwalb and Huttenlocher (Felz-Hutt) [32] attempts to
partition image pixels into components such that the
resulting segmentation is neither too coarse nor too fine.
Given a graph in which pixels are nodes and edge weights
measure the dissimilarity between nodes (e.g., color
differences), each node is initially placed in its own
component. Define the internal difference of a component
IntðRÞ as the largest weight in the minimum spanning tree
of R. Considering edges in nondecreasing order by weight,
each step of the algorithm merges components R1 and R2

connected by the current edge if the edge weight is less than

minðIntðR1Þ þ �ðR1Þ; IntðR2Þ þ �ðR2ÞÞ; ð1Þ

where �ðRÞ ¼ k=jRj in which k is a scale parameter that can
be used to set a preference for component size.

The Mean Shift algorithm [34] offers an alternative
clustering framework. Here, pixels are represented in the
joint spatial-range domain by concatenating their spatial
coordinates and color values into a single vector. Applying
mean shift filtering in this domain yields a convergence
point for each pixel. Regions are formed by grouping
together all pixels whose convergence points are closer than
hs in the spatial domain and hr in the range domain, where
hs and hr are the respective bandwidth parameters.
Additional merging can also be performed to enforce a
constraint on minimum region area.

Spectral graph theory [48] and, in particular, the
Normalized Cuts criterion [45], [46] provides a way of
integrating global image information into the grouping
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process. In this framework, given an affinity matrix W

whose entries encode the similarity between pixels, one
defines diagonal matrix Dii ¼

P
j Wij and solves for the

generalized eigenvectors of the linear system:

ðD�W Þv ¼ �Dv: ð2Þ

Traditionally, after this step, K-means clustering is
applied to obtain a segmentation into regions. This
approach often breaks uniform regions where the eigen-
vectors have smooth gradients. One solution is to reweight
the affinity matrix [47]; others have proposed alternative
graph partitioning formulations [49], [50], [51].

A recent variant of Normalized Cuts for image segmen-
tation is the Multiscale Normalized Cuts (NCuts) approach
of Cour et al. [33]. The fact that W must be sparse in order to
avoid a prohibitively expensive computation limits the
naive implementation to using only local pixel affinities.
Cour et al. solve this limitation by computing sparse affinity
matrices at multiple scales, setting up cross-scale con-
straints, and deriving a new eigenproblem for this con-
strained multiscale cut.

Sharon et al. [31] propose an alternative to improve the
computational efficiency of Normalized Cuts. This ap-
proach, inspired by algebraic multigrid, iteratively coarsens
the original graph by selecting a subset of nodes such that
each variable on the fine level is strongly coupled to one on
the coarse level. The same merging strategy is adopted in
[52], where the strong coupling of a subset S of the graph
nodes V is formalized asP

j2S pijP
j2V pij

>  8i 2 V � S; ð3Þ

where  is a constant and pij the probability of merging i
and j, estimated from brightness and texture similarity.

Many approaches to image segmentation fall into a
different category than those covered so far, relying on the
formulation of the problem in a variational framework. An
example is the model proposed by Mumford and Shah [53],
where the segmentation of an observed image u0 is given by
the minimization of the functional:

Fðu;CÞ ¼
Z

�

ðu� u0Þ2dxþ �
Z

�nC
jrðuÞj2dxþ �jCj; ð4Þ

where u is piecewise smooth in � n C and � and � are the
weighting parameters. Theoretical properties of this model
can be found in, e.g., [53], [54]. Several algorithms have
been developed to minimize the energy (4) or its
simplified version, where u is piecewise constant in
� n C. Koepfler et al. [55] proposed a region merging
method for this purpose. Chan and Vese [56], [57] follow a
different approach, expressing (4) in the level set formal-
ism of Osher and Sethian [58], [59]. Bertelli et al. [30]
extend this approach to more general cost functions based
on pairwise pixel similarities. Recently, Pock et al. [60]
proposed solving a convex relaxation of (4), thus obtaining
robustness to initialization. Donoser et al. [29] subdivide
the problem into several figure/ground segmentations,
each initialized using low-level saliency and solved by
minimizing an energy based on Total Variation.

2.3 Benchmarks

Though much of the extensive literature on contour
detection predates its development, the BSDS [2] has since
found wide acceptance as a benchmark for this task [23],
[24], [25], [26], [27], [28], [35], [61]. The standard for
evaluating segmentation algorithms is less clear.

One option is to regard the segment boundaries as
contours and evaluate them as such. However, a methodol-
ogy that directly measures the quality of the segments is also
desirable. Some types of errors, e.g., a missing pixel in the
boundary between two regions, may not be reflected in the
boundary benchmark, but can have substantial consequences
for segmentation quality, e.g., incorrectly merging large
regions. One might argue that the boundary benchmark
favors contour detectors over segmentation methods since
the former are not burdened with the constraint of
producing closed curves. We therefore also consider
various region-based metrics.

2.3.1 Variation of Information

The Variation of Information metric was introduced for the
purpose of clustering comparison [6]. It measures the
distance between two segmentations in terms of their
average conditional entropy given by

V IðS; S0Þ ¼ HðSÞ þHðS0Þ � 2IðS; S0Þ; ð5Þ

where H and I represent, respectively, the entropies and
mutual information between two clusterings of data S and
S0. In our case, these clusterings are test and ground-truth
segmentations. Although V I possesses some interesting
theoretical properties [6], its perceptual meaning and
applicability in the presence of several ground-truth
segmentations remain unclear.

2.3.2 Rand Index

Originally, the Rand Index [62] was introduced for general
clustering evaluation. It operates by comparing the compat-
ibility of assignments between pairs of elements in the
clusters. The Rand Index between test and ground-truth
segmentations S and G is given by the sum of the number
of pairs of pixels that have the same label in S and G and
those that have different labels in both segmentations,
divided by the total number of pairs of pixels. Variants of
the Rand Index have been proposed [5], [7] for dealing with
the case of multiple ground-truth segmentations. Given a
set of ground-truth segmentations fGkg, the Probabilistic
Rand Index is defined as

PRIðS; fGkgÞ ¼
1

T

X
i<j

½cijpij þ ð1� cijÞð1� pijÞ�; ð6Þ

where cij is the event that pixels i and j have the same label
and pij its probability, and T is the total number of pixel
pairs. Using the sample mean to estimate pij, (6) amounts to
averaging the Rand Index among different ground-truth
segmentations. The PRI has been reported to suffer from a
small dynamic range [5], [7], and its values across images
and algorithms are often similar. In [5], this drawback is
addressed by normalization with an empirical estimation of
its expected value.
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2.3.3 Segmentation Covering

The overlap between two regions R and R0, defined as

OðR;R0Þ ¼ jR \R
0j

jR [R0j ; ð7Þ

has been used for the evaluation of the pixelwise classifica-

tion task in recognition [8], [11]. We define the covering of a

segmentation S by a segmentation S0 as

CðS0 ! SÞ ¼ 1

N

X
R2S
jRj �max

R02S0
OðR;R0Þ; ð8Þ

where N denotes the total number of pixels in the image.
Similarly, the covering of a machine segmentation S by a

family of ground-truth segmentations fGig is defined by first

coveringS separately with each human segmentationGi and

then averaging over the different humans. To achieve

perfect covering, the machine segmentation must explain

all of the human data. We can then define two quality

descriptors for regions: the covering of S by fGig and the

covering of fGig by S.

3 CONTOUR DETECTION

As a starting point for contour detection, we consider the

work of Martin et al. [2], who define a function Pbðx; y; �Þ
that predicts the posterior probability of a boundary with

orientation � at each image pixel ðx; yÞ by measuring the

difference in local image brightness, color, and texture

channels. In this section, we review these cues, introduce our

own multiscale version of the Pb detector, and describe the

new globalization method we run on top of this multiscale

local detector.

3.1 Brightness, Color, and Texture Gradients

The basic building block of the Pb contour detector is the
computation of an oriented gradient signal Gðx; y; �Þ from
an intensity image I. This computation proceeds by placing

a circular disc at location ðx; yÞ split into two half-discs by a
diameter at angle �. For each half-disc, we histogram the
intensity values of the pixels of I covered by it. The gradient
magnitude G at location ðx; yÞ is defined by the �2 distance
between the two half-disc histograms g and h:

�2ðg; hÞ ¼ 1

2

X
i

ðgðiÞ � hðiÞÞ2

gðiÞ þ hðiÞ : ð9Þ

We then apply second-order Savitzky-Golay filtering [63] to
enhance local maxima and smooth out multiple detection
peaks in the direction orthogonal to �. This is equivalent to
fitting a cylindrical parabola, whose axis is orientated along
direction �, to a local 2D window surrounding each pixel
and replacing the response at the pixel with that estimated
by the fit.

Fig. 4 shows an example. This computation is motivated
by the intuition that contours correspond to image dis-
continuities and histograms provide a robust mechanism
for modeling the content of an image region. A strong
oriented gradient response means that a pixel is likely to lie
on the boundary between two distinct regions.

The Pb detector combines the oriented gradient signals
obtained from transforming an input image into four
separate feature channels and processing each channel
independently. The first three correspond to the channels of
the CIE Lab colorspace, which we refer to as the brightness,
color a, and color b channels. For gray-scale images, the
brightness channel is the image itself and no color channels
are used.

The fourth channel is a texture channel which assigns
each pixel a texton id. These assignments are computed by
another filtering stage which occurs prior to the computation
of the oriented gradient of histograms. This stage converts
the input image to gray scale and convolves it with the set of
17 Gaussian derivative and center surround filters shown in
Fig. 5. Each pixel is associated with a (17-dimensional) vector
of responses, containing one entry for each filter. These
vectors are then clustered using K-means. The cluster centers
define a set of image-specific textons and each pixel is
assigned the integer id in ½1; K� of the closest cluster center.
Experiments show choosing K ¼ 64 textons to be sufficient.

We next form an image where each pixel has an integer
value in ½1; K�, as determined by its texton id. An example
can be seen in Fig. 6 (left column, fourth panel from top). On
this image, we compute differences of histograms in
oriented half-discs in the same manner as for the brightness
and color channels.

Obtaining Gðx; y; �Þ for arbitrary input I is thus the core
operation on which our local cues depend. In the Appendix,
we provide a novel approximation scheme for reducing the
complexity of this computation.

3.2 Multiscale Cue Combination

We now introduce our own multiscale extension of the Pb
detector reviewed above. Note that Ren [28] introduces a
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Fig. 4. Oriented gradient of histograms. Given an intensity image,
consider a circular disc centered at each pixel and split by a diameter at
angle �. We compute histograms of intensity values in each half-disc
and output the �2 distance between them as the gradient magnitude.
The blue and red distributions shown in (b) are the histograms of the
pixel brightness values in the blue and red regions, respectively, in the
left image. (c) shows an example result for a disc of radius 5 pixels at
orientation � ¼ �

4 after applying a second-order Savitzky-Golay smooth-
ing filter to the raw histogram difference output. Note that (a) displays a
larger disc (radius 50 pixels) for illustrative purposes.

Fig. 5. Filters for creating textons. We use eight oriented even and odd

symmetric Gaussian derivative filters and a center surround (difference

of Gaussians) filter.



different, more complicated, and similarly performing
multiscale extension in work contemporaneous with our
own [3], and also suggests possible reasons Martin et al. [2]
did not see the performance improvements in their original
multiscale experiments, including their use of smaller
images and their choice of scales.

In order to detect fine as well as coarse structures, we
consider gradients at three scales: ½	2 ; 	; 2	� for each of the
brightness, color, and texture channels. Fig. 6 shows an
example of the oriented gradients obtained for each

channel. For the brightness channel, we use 	 ¼ 5 pixels,
while for color and texture, we use 	 ¼ 10 pixels. We then
linearly combine these local cues into a single multiscale
oriented signal:

mPbðx; y; �Þ ¼
X
s

X
i


i;sGi;	ði;sÞðx; y; �Þ; ð10Þ

where s indexes scales, i indexes feature channels (bright-
ness, color a, color b, and texture), and Gi;	ði;sÞðx; y; �Þ
measures the histogram difference in channel i between two
halves of a disc of radius 	ði; sÞ centered at ðx; yÞ and
divided by a diameter at angle �. The parameters 
i;s weight
the relative contribution of each gradient signal. In our
experiments, we sample � at eight equally spaced orienta-
tions in the interval ½0; �Þ. Taking the maximum response
over orientations yields a measure of boundary strength at
each pixel:

mPbðx; yÞ ¼ max
�
fmPbðx; y; �Þg: ð11Þ

An optional nonmaximum suppression step [22] produces
thinned, real-valued contours.

In contrast to [2] and [28], which use a logistic regression
classifier to combine cues, we learn the weights 
i;s by
gradient ascent on the F-measure using the training images
and corresponding ground truth of the BSDS.

3.3 Globalization

Spectral clustering lies at the heart of our globalization
machinery. The key element differentiating the algorithm
described in this section from other approaches [45], [47] is
the “soft” manner in which we use the eigenvectors
obtained from spectral partitioning.

As input to the spectral clustering stage, we construct a
sparse symmetric affinity matrix W using the intervening
contour cue [49], [64], [65], the maximal value of mPb along
a line connecting two pixels. We connect all pixels i and j
within a fixed radius r with affinity:

Wij ¼ exp �max
p2ij
fmPbðpÞg=�

 !
; ð12Þ

where ij is the line segment connecting i and j and � is a
constant. We set r ¼ 5 pixels and � ¼ 0:1.

In order to introduce global information, we define Dii ¼P
j Wij and solve for the generalized eigenvectors fv0;v1;

. . . ;vng of the system ðD�WÞv ¼ �Dv (2) corresponding
to the nþ 1 smallest eigenvalues 0 ¼ �0 � �1 � � � � � �n.
Fig. 7 displays an example with four eigenvectors. In
practice, we use n ¼ 16.

At this point, the standard Normalized Cuts approach
associates with each pixel a length n descriptor formed from
entries of the n eigenvectors and uses a clustering algorithm
such as K-means to create a hard partition of the image.
Unfortunately, this can lead to an incorrect segmentation as
large uniform regions in which the eigenvectors vary
smoothly are broken up. Fig. 7 shows an example for
which such gradual variation in the eigenvectors across the
sky region results in an incorrect partition.

To circumvent this difficulty, we observe that the
eigenvectors themselves carry contour information. Treating
each eigenvector vk as an image, we convolve with Gaussian
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Fig. 6. Multiscale Pb. Left Column, Top to Bottom: The brightness and
color a and b channels of Lab color space, and the texton channel
computed using image-specific textons, followed by the input image.
Rows: Next to each channel, we display the oriented gradient of
histograms (as outlined in Fig. 4) for � ¼ 0 and � ¼ �

2 (horizontal and
vertical), and the maximum response over eight orientations in ½0; �Þ
(right column). Beside the original image, we display the combination of
oriented gradients across all four channels and three scales. The lower
right panel (outlined in red) shows mPb, the final output of the multiscale
contour detector.



directional derivative filters at multiple orientations �,

obtaining oriented signals fr�vkðx; yÞg. Taking derivatives

in this manner ignores the smooth variations that previously

lead to errors. The information from different eigenvectors is

then combined to provide the “spectral” component of our

boundary detector:

sPbðx; y; �Þ ¼
Xn
k¼1

1ffiffiffiffiffi
�k
p � r�vkðx; yÞ; ð13Þ

where the weighting by 1=
ffiffiffiffiffi
�k
p

is motivated by the physical

interpretation of the generalized eigenvalue problem as a

mass-spring system [66]. Figs. 7 and 8 present examples of

the eigenvectors, their directional derivatives, and the

resulting sPb signal.
The signals mPb and sPb convey different information,

as the former fires at all the edges, while the latter extracts

only the most salient curves in the image. We found that a

simple linear combination is enough to benefit from both

behaviors. Our final globalized probability of boundary is then

written as a weighted sum of local and spectral signals:

gPbðx; y; �Þ ¼
X
s

X
i

�i;sGi;	ði;sÞðx; y; �Þ þ 
 � sPbðx; y; �Þ:

ð14Þ

We subsequently rescale gPb using a sigmoid to match a
probabilistic interpretation. As with mPb (10), the weights
�i;s and 
 are learned by gradient ascent on the F-measure
using the BSDS training images.

3.4 Results

Qualitatively, the combination of the multiscale cues with
our globalization machinery translates into a reduction of
clutter edges and completion of contours in the output, as
shown in Fig. 9.

Fig. 10 breaks down the contributions of the multiscale
and spectral signals to the performance of gPb. These
precision-recall curves show that the reduction of false
positives due to the use of global information in sPb is
concentrated in the high thresholds, while gPb takes the
best of both worlds, relying on sPb in the high-precision
regime and on mPb in the high-recall regime.

Looking again at the comparison of contour detectors on
the BSDS300 benchmark in Fig. 1, the mean improvement in
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Fig. 7. Spectral Pb. (a) Image. (b) The thinned nonmax suppressed multiscale Pb signal defines a sparse affinity matrix connecting pixels within a

fixed radius. Pixels i and j have a low affinity as a strong boundary separates them, whereas i and k have high affinity. (c) The first four generalized

eigenvectors resulting from spectral clustering. (d) Partitioning the image by running K-means clustering on the eigenvectors erroneously breaks

smooth regions. (e) Instead, we compute gradients of the eigenvectors, transforming them back into a contour signal.

Fig. 8. Eigenvectors carry contour information. (a) Image and maximum response of spectral Pb over orientations, sPbðx; yÞ ¼ max�fsPbðx; y; �Þg.
(b) First four generalized eigenvectors, v1; . . . ;v4, used in creating sPb. (c) Maximum gradient response over orientations, max�fr�vkðx; yÞg, for

each eigenvector.



precision of gPb with respect to the single scale Pb is

10 percent in the recall range ½0:1; 0:9�.

4 SEGMENTATION

The nonmax suppressed gPb contours produced in the

previous section are often not closed, and hence do not

partition the image into regions. These contours may still be
useful, e.g., as a signal on which to compute image
descriptors. However, closed regions offer additional
advantages. Regions come with their own scale estimates
and provide natural domains for computing features used
in recognition. Many visual tasks can also benefit from the
complexity reduction achieved by transforming an image
with millions of pixels into a few hundred or thousand
“superpixels” [67].

In this section, we show how to recover closed contours
while preserving the gains in boundary quality achieved in
the previous section. Our algorithm, first reported in [4],
builds a hierarchical segmentation by exploiting the
information in the contour signal. We introduce a new
variant of the watershed transform [68], [69], the Oriented
Watershed Transform (OWT), for producing a set of initial
regions from contour detector output. We then construct an
Ultrametric Contour Map (UCM) [35] from the boundaries
of these initial regions.

This sequence of operations (OWT-UCM) can be seen as
generic machinery for going from contours to a hierarchical
region tree. Contours encoded in the resulting hierarchical
segmentation retain real-valued weights, indicating their
likelihood of being a true boundary. For a given threshold,
the output is a set of closed contours that can be treated as
either a segmentation or as a boundary detector for the
purposes of benchmarking.

To describe our algorithm in the most general setting, we
now consider an arbitrary contour detector whose output
Eðx; y; �Þ predicts the probability of an image boundary at
location ðx; yÞ and orientation �.

4.1 Oriented Watershed Transform

Using the contour signal, we first construct a finest partition
for the hierarchy, an oversegmentation whose regions
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Fig. 9. Benefits of globalization. When compared with the local detector Pb, our detector gPb reduces clutter and completes contours. The thresholds

shown correspond to the points of maximal F-measure on the curves in Fig. 1.

Fig. 10. Globalization improves contour detection. The spectral Pb
detector (sPb), derived from the eigenvectors of a spectral partitioning
algorithm, improves the precision of the local multiscale Pb signal (mPb)
used as input. Global Pb (gPb), a learned combination of the two,
provides uniformly better performance. Also note the benefit of using
multiple scales (mPb) over single scale Pb. Results shown on the
BSDS300.



determine the highest level of detail considered. This is
done by computing Eðx; yÞ ¼ max�Eðx; y; �Þ, the maximal
response of the contour detector over orientations. We take
the regional minima of Eðx; yÞ as seed locations for
homogeneous segments and apply the watershed transform
used in mathematical morphology [68], [69] on the topo-
graphic surface defined by Eðx; yÞ. The catchment basins of
the minima, denoted by P0, provide the regions of the finest
partition and the corresponding watershed arcs K0, the
possible locations of the boundaries.

Fig. 11 shows an example of the standard watershed
transform. Unfortunately, simply weighting each arc by the
mean value of Eðx; yÞ for the pixels on the arc can introduce

artifacts. The root cause of this problem is the fact that the

contour detector produces a spatially extended response

around strong boundaries. For example, a pixel could lie

near but not on a strong vertical contour. If this pixel also

happens to belong to a horizontal watershed arc, that arc

would be erroneously upweighted. Several such cases can

be seen in Fig. 11. As we flood from all local minima, the

initial watershed oversegmentation contains many arcs that

should be weak, yet intersect nearby strong boundaries.
To correct this problem, we enforce consistency between

the strength of the boundaries of K0 and the underlying
Eðx; y; �Þ signal in a modified procedure which we call the
OWT, illustrated in Fig. 12. As the first step in this
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Fig. 11. Watershed Transform. Left: Image. Middle Left: Boundary strength Eðx; yÞ. We regard Eðx; yÞ as a topographic surface and flood it from its
local minima. Middle Right: This process partitions the image into catchment basins P0 and arcs K0. There is exactly one basin per local minimum
and the arcs coincide with the locations where the floods originating from distinct minima meet. Local minima are marked with red dots. Right: Each
arc weighted by the mean value of Eðx; yÞ along it. This weighting scheme produces artifacts, such as the strong horizontal contours in the small gap
between the two statues.

Fig. 12. Oriented watershed transform. Left: Input boundary signal Eðx; yÞ ¼ max�Eðx; y; �Þ. Middle left: Watershed arcs computed from Eðx; yÞ.
Note that thin regions give rise to artifacts. Middle: Watershed arcs with an approximating straight line segment subdivision overlaid. We compute
this subdivision in a scale-invariant manner by recursively breaking an arc at the point maximally distant from the straight line segment connecting its
endpoints, as shown in Fig. 13. Subdivision terminates when the distance from the line segment to every point on the arc is less than a fixed fraction
of the segment length. Middle right: Oriented boundary strength Eðx; y; �Þ for four orientations �. In practice, we sample eight orientations. Right:
Watershed arcs reweighted according to E at the orientation of their associated line segments. Artifacts such as the horizontal contours breaking the
long skinny regions are suppressed as their orientations do not agree with the underlying Eðx; y; �Þ signal.



reweighting process, we estimate an orientation at each pixel
on an arc from the local geometry of the arc itself. These
orientations are obtained by approximating the watershed
arcs with line segments, as shown in Fig. 13. We recursively
subdivide any arc which is not well fit by the line segment
connecting its endpoints. By expressing the approximation
criterion in terms of the maximum distance of a point on the
arc from the line segment as a fraction of the line segment
length, we obtain a scale-invariant subdivision. We assign
each pixel ðx; yÞ on a subdivided arc the orientation oðx; yÞ 2
½0; �Þ of the corresponding line segment.

Next, we use the oriented contour detector output
Eðx; y; �Þ to assign each arc pixel ðx; yÞ a boundary strength
of Eðx; y; oðx; yÞÞ. We quantize oðx; yÞ in the same manner as
�, so this operation is a simple lookup. Finally, each original
arc in K0 is assigned weight equal to average boundary
strength of the pixels it contains. Comparing the middle left
and far right panels in Fig. 12 shows that this reweighting
scheme removes artifacts.

4.2 Ultrametric Contour Map

Contours have the advantage that it is fairly straightfor-
ward to represent uncertainty in the presence of a true
underlying contour, i.e., by associating a binary random
variable to it. One can interpret the boundary strength
assigned to an arc by the OWT of the previous section as an
estimate of the probability of that arc being a true contour.

It is not immediately obvious how to represent un-
certainty about a segmentation. One possibility which we
exploit here is the UCM [35], which defines a duality
between closed, non-self-intersecting weighted contours
and a hierarchy of regions. The base level of this hierarchy
respects even weak contours and is thus an oversegmenta-
tion of the image. Upper levels of the hierarchy respect only
strong contours, resulting in an undersegmentation. Mov-
ing between levels offers a continuous trade-off between
these extremes. This shift in representation from a single
segmentation to a nested collection of segmentations frees
later processing stages to use information from multiple
levels or select a level based on additional knowledge.

Our hierarchy is constructed by a greedy-graph-based
region merging algorithm. We define an initial graph
G ¼ ðP0;K0;WðK0ÞÞ, where the nodes are the regions P0,
the links are the arcs K0 separating adjacent regions, and the
weights W ðK0Þ are a measure of dissimilarity between
regions. The algorithm proceeds by sorting the links by
similarity and iteratively merging the most similar regions.
Specifically:

1. Select minimum weight contour:

C� ¼ arg min
C2K0

WðCÞ:

2. Let R1; R2 2 P0 be the regions separated by C�.
3. Set R ¼ R1 [R2, and update:

P0  P0nfR1; R2g [ fRg and K0  K0nfC�g:

4. Stop if K0 is empty.
Otherwise, update weights W ðK0Þ and repeat.

This process produces a tree of regions where the leaves are
the initial elements of P0, the root is the entire image, and
the regions are ordered by the inclusion relation.

We define dissimilarity between two adjacent regions as
the average strength of their common boundary in K0, with
weights W ðK0Þ initialized by the OWT. Since, at every step
of the algorithm, all remaining contours must have strength
greater than or equal to those previously removed, the
weight of the contour currently being removed cannot
decrease during the merging process. Hence, the con-
structed region tree has the structure of an indexed
hierarchy and can be described by a dendrogram, where
the height HðRÞ of each region R is the value of the
dissimilarity at which it first appears. Stated equivalently,
HðRÞ ¼WðCÞ, where C is the contour whose removal
formed R. The hierarchy also yields a metric on P0 � P0,
with the distance between two regions given by the height
of the smallest containing segment:

DðR1; R2Þ ¼ minfHðRÞ : R1; R2 � Rg: ð15Þ

This distance satisfies the ultrametric property:

DðR1; R2Þ � maxðDðR1; RÞ; DðR;R2ÞÞ ð16Þ

since if R is merged with R1 before R2, then DðR1; R2Þ ¼
DðR;R2Þ, or if R is merged with R2 before R1, then
DðR1; R2Þ ¼ DðR1; RÞ. As a consequence, the whole hier-
archy can be represented as a UCM [35], the real-valued
image obtained by weighting each boundary by its scale of
disappearance.

Fig. 14 presents an example of our method. The UCM is a
weighted contour image that, by construction, has the
remarkable property of producing a set of closed curves for
any threshold. Conversely, it is a convenient representation
of the region tree since the segmentation at a scale k can be
easily retrieved by thresholding the UCM at level k. Since
our notion of scale is the average contour strength, the UCM
values reflect the contrast between neighboring regions.

4.3 Results

While the OWT-UCM algorithm can use any source of
contours for the input Eðx; y; �Þ signal (e.g., the Canny
edge detector before thresholding), we obtain the best
results by employing the gPb detector [3] introduced in
Section 3. We report experiments using both gPb as well as
the baseline Canny detector, and refer to the resulting
segmentation algorithms as gPb-owt-ucm and Canny-owt-
ucm, respectively.

Figs. 15 and 16 illustrate results of gPb-owt-ucm on
images from the BSDS500. Since the OWT-UCM algorithm
produces hierarchical region trees, obtaining a single
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Fig. 13. Contour subdivision. (a) Initial arcs color-coded. If the distance
from any point on an arc to the straight line segment connecting its
endpoints is greater than a fixed fraction of the segment length, we
subdivide the arc at the maximally distant point. An example is shown for
one arc, with the dashed segments indicating the new subdivision.
(b) The final set of arcs resulting from recursive application of the scale-
invariant subdivision procedure. (c) Approximating straight line seg-
ments overlaid on the subdivided arcs.



segmentation as output involves a choice of scale. One
possibility is to use a fixed threshold for all images in
the data set, calibrated to provide optimal performance on
the training set. We refer to this as the optimal data set scale
(ODS). We also evaluate the performance when the optimal
threshold is selected by an oracle on a per-image basis. With
this choice of optimal image scale (OIS), one naturally obtains
even better segmentations.

4.4 Evaluation

To provide a basis of comparison for the OWT-UCM
algorithm, we make use of the region merging (Felz-Hutt)
[32], Mean Shift [34], Multiscale NCuts [33], and SWA [31],
[52] segmentation methods reviewed in Section 2.2. We
evaluate each method using the boundary-based precision-
recall framework of [2] as well as the Variation of
Information, Probabilistic Rand Index, and segment cover-
ing criteria discussed in Section 2.3. The BSDS serves as
ground truth for both the boundary and region quality
measures since the human-drawn boundaries are closed
and hence are also segmentations.

4.4.1 Boundary Quality

Remember that the evaluation methodology developed by
[2] measures detector performance in terms of precision, the
fraction of true positives, and recall, the fraction of ground-
truth boundary pixels detected. The global F-measure, or
harmonic mean of precision and recall at the optimal
detector threshold, provides a summary score.

In our experiments, we report three different quantities
for an algorithm: the best F-measure on the data set for a
fixed scale (ODS), the aggregate F-measure on the data set
for the best scale in each image (OIS), and the average
precision (AP) on the full recall range (equivalently, the area
under the precision-recall curve). Table 1 shows these
quantities for the BSDS. Figs. 2 and 17 display the full
precision-recall curves on the BSDS300 and BSDS500 data
sets, respectively. We find retraining on the BSDS500 to be
unnecessary and use the same parameters learned on the
BSDS300. Fig. 18 presents side by side comparisons of
segmentation algorithms.

Of particular note in Fig. 17 are pairs of curves
corresponding to contour detector output and regions
produced by running the OWT-UCM algorithm on that
output. The similarity in quality within each pair shows that

we can convert contours into hierarchical segmentations
without loss of boundary precision or recall.

4.4.2 Region Quality

Table 2 presents region benchmarks on the BSDS. For a
family of machine segmentations fSig, associated with
different scales of a hierarchical algorithm or different sets
of parameters, we report three scores for the covering of the
ground truth by segments in fSig. These correspond to
selecting covering regions from the segmentation at a
universal fixed scale (ODS), a fixed scale per image (OIS),
or from any level of the hierarchy or collection fSig (Best).
We also report the Probabilistic Rand Index and Variation
of Information benchmarks.

While the relative ranking of segmentation algorithms
remains fairly consistent across different benchmark criter-
ia, the boundary benchmark (Table 1 and Fig. 17) appears
most capable of discriminating performance. This observa-
tion is confirmed by evaluating a fixed hierarchy of regions
such as the Quad-Tree (with eight levels). While the
boundary benchmark and segmentation covering criterion
clearly separate it from all other segmentation methods, the
gap narrows for the Probabilistic Rand Index and the
Variation of Information.

4.4.3 Additional Data Sets

We concentrated experiments on the BSDS because it is the
most complete data set available for our purposes, has been
used in several publications and has the advantage of
providing multiple human-labeled segmentations per image.
Table 3 reports the comparison between Canny-owt-ucm and
gPb-owt-ucm on two other publicly available data sets:

. MSRC [71]: The MSRC object recognition database is
composed of 591 natural images with objects
belonging to 21 classes. We evaluate the performance
using the ground-truth object instance labeling of
[11], which is cleaner and more precise than the
original data.

. PASCAL 2008 [8]: We use the train and validation
sets of the segmentation task on the 2008 PASCAL
segmentation challenge, composed of 1,023 images.
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Fig. 14. Hierarchical segmentation from contours. Far Left: Image. Left: Maximal response of contour detector gPb over orientations. Middle Left:
Weighted contours resulting from the Oriented Watershed Transform-Ultrametric Contour Map (OWT-UCM) algorithm using gPb as input. This
single weighted image encodes the entire hierarchical segmentation. By construction, applying any threshold to it is guaranteed to yield a set of
closed contours (the ones with weights above the threshold), which in turn define a segmentation. Moreover, the segmentations are nested.
Increasing the threshold is equivalent to removing contours and merging the regions they separated. Middle Right: The initial oversegmentation
corresponding to the finest level of the UCM, with regions represented by their mean color. Right and Far Right: Contours and corresponding
segmentation obtained by thresholding the UCM at level 0.5.



This is one of the most difficult and varied data sets
for recognition. We evaluate the performance with
respect to the object instance labels provided. Note
that only objects belonging to the 20 categories of the
challenge are labeled, and 76 percent of all pixels are
unlabeled.

4.4.4 Summary

The gPb-owt-ucm segmentation algorithm offers the best
performance on every data set and for every benchmark
criterion we tested. In addition, it is straightforward, fast,
has no parameters to tune, and, as discussed in the
following sections, can be adapted for use with top-down
knowledge sources.
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Fig. 15. Hierarchical segmentation results on the BSDS500. From left to right: Image, UCM produced by gPb-owt-ucm, and segmentations obtained
by thresholding at the ODS and OIS. All images are from the test set.



5 INTERACTIVE SEGMENTATION

Until now, we have only discussed fully automatic image

segmentation. Human-assisted segmentation is relevant for

many applications, and recent approaches rely on the

graph-cuts formalism [72], [73], [74] or other energy

minimization procedure [75] to extract foreground regions.

For example, Boykov and Jolly [72] cast the task of

determining binary foreground/background pixel assign-

ments in terms of a cost function with both unary and

pairwise potentials. The unary potentials encode agreement

with estimated foreground or background region models and

the pairwise potentials bias neighboring pixels not separated
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Fig. 16. Additional hierarchical segmentation results on the BSDS500. From top to bottom: Image, UCM produced by gPb-owt-ucm, and ODS and

OIS segmentations. All images are from the test set.



by a strong boundary to have the same label. They transform
this system into an equivalent minimum cut/maximum flow
graph partitioning problem through the addition of a source
node representing the foreground and a sink node represent-
ing the background. Edge weights between pixel nodes are
defined by the pairwise potentials, while the weights
between pixel nodes and the source and sink nodes are
determined by the unary potentials. User-specified hard
labeling constraints are enforced by connecting a pixel to the
source or sink with sufficiently large weight. The minimum
cut of the resulting graph can be computed efficiently and
produces a cost-optimizing assignment.

It turns out that the segmentation trees generated by the

OWT-UCM algorithm provide a natural starting point for

user-assisted refinement. Following the procedure of [76],

we can extend a partial labeling of regions to a full one by

assigning to each unlabeled region the label of its closest

labeled region, as determined by the ultrametric distance

(15). Computing the full labeling is simply a matter of

propagating information in a single pass along the

segmentation tree. Each unlabeled region receives the label

of the first labeled region merged with it. This procedure, as
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TABLE 1
Boundary Benchmarks on the BSDS

Results for seven different segmentation methods (upper table) and two
contour detectors (lower table) are given. Shown are the F-measures
when choosing an optimal scale for the entire data set (ODS) or per
image (OIS), as well as the AP. Figs. 1, 2, and 17 show the full
precision-recall curves for these algorithms. Note that the boundary
benchmark has the largest discriminative power among the evaluation
criteria, clearly separating the Quad-Tree from all of the data-driven
methods.

Fig. 17. Boundary benchmark on the BSDS500. Comparing boundaries
to human ground truth allows us to evaluate contour detectors [3], [22]
(dotted lines) and segmentation algorithms [4], [32], [33], [34] (solid
lines) in the same framework. Performance is consistent when going
from the BSDS300 (Figs. 1 and 2) to the BSDS500 (above).
Furthermore, the OWT-UCM algorithm preserves contour detector
quality. For both gPb and Canny, comparing the resulting segment
boundaries to the original contours shows that our OWT-UCM algorithm
constructs hierarchical segmentations from contours without losing
performance on the boundary benchmark.

Fig. 18. Pairwise comparison of segmentation algorithms on the
BSDS300. The coordinates of the red dots are the boundary benchmark
scores (F-measures) at the optimal image scale for each of the two
methods compared on single images. Boxed totals indicate the number
of images where one algorithm is better. For example, the top-left shows
gPb-owt-ucm outscores NCuts on 99=100 images. When comparing with
SWA, we further restrict the output of the second method to match the
number of regions produced by SWA. All differences are statistically
significant except between Mean Shift and NCuts.

TABLE 2
Region Benchmarks on the BSDS

For each segmentation method, the leftmost three columns report the
score of the covering of ground-truth segments according to ODS, OIS,
or Best covering criteria. The rightmost four columns compare the
segmentation methods against ground-truth using the Probabilistic Rand
Index (PRI) and Variation of Information (VI) benchmarks, respectively.
Among the region benchmarks, the covering criterion has the largest
dynamic range, followed by PRI and VI.



illustrated in Fig. 19, allows a user to obtain high-quality
results with minimal annotation.

6 MULTISCALE FOR OBJECT ANALYSIS

Our contour detection and segmentation algorithms capture
multiscale information by combining local gradient cues
computed at three different scales, as described in Section 3.2.
We did not see any performance benefit on the BSDS by using
additional scales. However, this fact is not an invitation to
conclude that a simple combination of a limited range of local
cues is a sufficient solution to the problem of multiscale
image analysis. Rather, it is a statement about the nature of
the BSDS. The fixed resolution of the BSDS images and the
inherent photographic bias of the data set lead to the situation
in which a small range of scales captures the boundaries that
humans find important.

Dealing with the full variety one expects in high-
resolution images of complex scenes requires more than a
naive weighted average of signals across the scale range.
Such an average would blur information, resulting in good
performance for medium-scale contours, but poor detection
of both fine-scale and large-scale contours. Adaptively
selecting the appropriate scale at each location in the image
is desirable, but it is unclear how to estimate this robustly
using only bottom-up cues.

For some applications, in particular object detection, we
can instead use a top-down process to guide scale selection.
Suppose we wish to apply a classifier to determine whether
a subwindow of the image contains an instance of a given
object category. We need only report a positive answer
when the object completely fills the subwindow, as the
detector will be run on a set of windows densely sampled
from the image. Thus, we know the size of the object we are

looking for in each window, and hence, the scale at which
contours belonging to the object would appear. Varying the
contour scale with the window size produces the best input
signal for the object detector. Note that this procedure does
not prevent the object detector itself from using multiscale
information, but rather provides the correct central scale.

As each segmentation internally uses gradients at three
scales ½	2 ; 	; 2	�, by stepping by a factor of 2 in scale between
segmentations, we can reuse shared local cues. The globaliza-
tion stage (sPb signal) can optionally be customized for each
window by computing it using only a limited surrounding
image region. This strategy, used here, results in more
work overall (a larger number of simpler globalization
problems), which can be mitigated by not sampling sPb as
densely as one samples windows.

Fig. 20 shows an example using images from the
PASCAL data set. Bounding boxes displayed are slightly
larger than each object to give some context. Multiscale
segmentation shows promise for detecting fine-scale objects
in scenes as well as making salient details available together
with large-scale boundaries.

APPENDIX

EFFICIENT COMPUTATION

Computing the oriented gradient of histograms (Fig. 4)
directly as outlined in Section 3.1 is expensive. In particular,
for an N pixel image and a disc of radius r, it takes OðNr2Þ
time to compute since a region of area Oðr2Þ is examined at
every pixel location. This entire procedure is repeated
32 times (four channels with eight orientations) for each of
three choices of r (the cost of the largest scale dominates the
time complexity). Martin et al. [2] suggest ways to speed up
this computation, including incremental updating of the
histograms as the disc is swept across the image. However,
this strategy still requires OðNrÞ time. We present an
algorithm for the oriented gradient of histograms computa-
tion that runs in OðNÞ time, independent of the radius r.

Following Fig. 21, we can approximate each half-disc by
a series of rectangles. It turns out that a single rectangle is
a sufficiently good approximation for our purposes (in
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TABLE 3
Region Benchmarks on MSRC and PASCAL 2008

Shown are scores for the segment covering criteria.

Fig. 19. Interactive segmentation. Left: Image. Middle: UCM produced by gPb-owt-ucm (gray scale) with additional user annotations (color dots and

lines). Right: The region hierarchy defined by the UCM allows us to automatically propagate annotations to unlabeled segments, resulting in the

desired labeling of the image with minimal user effort.



principle, we can always choose a fixed number of
rectangles to achieve any specified accuracy). Now, instead

of rotating our rectangular regions, we prerotate the image
so that we are concerned with computing a histogram of
the values within axis-aligned rectangles. This can be done

in time independent of the size of the rectangle using
integral images.

We process each histogram bin separately. Let I denote

the rotated intensity image and let Ibðx; yÞ be 1 if Iðx; yÞ falls
in histogram bin b and 0 otherwise. Compute the integral

image Jb as the cumulative sum across rows of the
cumulative sum across columns of Ib. The total energy in

an axis-aligned rectangle with points P , Q, R, and S as its
upper left, upper right, lower left, and lower right corners,

respectively, falling in histogram bin b is

hðbÞ ¼ JbðP Þ þ JbðSÞ � JbðQÞ � JbðRÞ: ð17Þ

It takes OðNÞ time to prerotate the image and OðNÞ to
compute each of the OðBÞ integral images, where B is the

number of bins in the histogram. Once these are computed,
there is OðBÞ work per rectangle, of which there are OðNÞ.
Rotating the output back to the original coordinate frame
takes an additional OðNÞ work. The total complexity is thus

OðNBÞ instead of OðNr2Þ (actually instead of OðNr2 þNBÞ
since we always had to compute �2 distances between
N histograms). Since B is a fixed constant, the computation
time no longer grows as we increase the scale r.

This algorithm runs in OðNBÞ time as long as we use at
most a constant number of rectangular boxes to approx-
imate each half-disc. For an intuition as to why a single
rectangle turns out to be sufficient, look again at the overlap
of the rectangle with the half-disc in the lower left of Fig. 21.
The majority of the pixels used in forming the histogram lie
within both the rectangle and the disc, and those pixels that
differ are far from the center of the disc (the pixel at which
we are computing the gradient). Thus, we are only slightly
changing the shape of the region we use for context around
each pixel. Fig. 22 shows that the result using the single-
rectangle approximation is visually indistinguishable from
that using the original half-disc.

Note that the same image rotation technique can be
used for computing convolutions with any oriented
separable filter, such as the oriented Gaussian derivative
filters used for textons (Fig. 5) or the second-order
Savitzky-Golay filters used for spatial smoothing of our
oriented gradient output. Rotating the image, convolving
with two 1D filters, and inverting the rotation are more
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Fig. 20. Multiscale segmentation for object detection. Top: Images from the PASCAL 2008 data set, with objects outlined at ground-truth locations.
Detailed Views: For each window, we show the boundaries obtained by running the entire gPb-owt-ucm segmentation algorithm at multiple scales.
Scale increases by factors of 2 moving from left to right (and top to bottom for the blue window). The total scale range is thus larger than the three
scales used internally for each segmentation. Highlighted Views: The highlighted scale best captures the target object’s boundaries. Note the link
between this scale and the absolute size of the object in the image. For example, the small sailboat (red outline) is correctly segmented only at the
finest scale. In other cases (e.g., parrot and magenta outline), bounding contours appear across several scales, but informative internal contours are
scale sensitive. A window-based object detector could learn and exploit an optimal coupling between object size and segmentation scale.



efficient than convolving with a rotated 2D filter. More-

over, in this case, no approximation is required as these
operations are equivalent up to the numerical accuracy of
the interpolation done when rotating the image. This
means that all of the filtering performed as part of the local
cue computation can be done in OðNrÞ time instead of

OðNr2Þ time where, here, r ¼ maxðw; hÞ and w and h are
the width and height of the 2D filter matrix. For large r, the
computation time can be further reduced by using the Fast
Fourier Transform to calculate the convolution.

The entire local cue computation is also easily paralle-

lized. The image can be partitioned into overlapping
subimages to be processed in parallel. In addition, the
96 intermediate results (three scales of four channels with
eight orientations) can all be computed in parallel as they
are independent subproblems. Catanzaro et al. [77] have

created a parallel GPU implementation of our gPb contour
detector. They also exploit the integral histogram trick
introduced here, with the single-rectangle approximation,
while replicating our precision-recall performance curve on
the BSDS benchmark. The speed improvements due to both

the reduction in computational complexity and paralleliza-
tion make our gPb contour detector and gPb-owt-ucm
segmentation algorithm practical tools.
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[4] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “From Contours
to Regions: An Empirical Evaluation,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2009.

[5] R. Unnikrishnan, C. Pantofaru, and M. Hebert, “Toward Objective
Evaluation of Image Segmentation Algorithms,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 29, no. 6, pp. 929-
944, June 2007.

[6] M. Meila, “Comparing Clusterings: An Axiomatic View,” Proc.
22nd Int’l Conf. Machine Learning, 2005.

[7] A.Y. Yang, J. Wright, Y. Ma, and S.S. Sastry, “Unsupervised
Segmentation of Natural Images via Lossy Data Compression,”
Computer Vision and Image Understanding, vol. 110, pp. 212-225,
2008.

[8] M. Everingham, L. van Gool, C. Williams, J. Winn, and A.
Zisserman “PASCAL 2008 Results,” http://www.pascal-network.
org/challenges/VOC/voc2008/workshop/index.html, 2008.

[9] D. Hoiem, A.A. Efros, and M. Hebert, “Geometric Context from a
Single Image,” Proc. 10th IEEE Int’l Conf. Computer Vision, 2005.

[10] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S.
Belongie, “Objects in Context,” Proc. 11th IEEE Int’l Conf. Computer
Vision, 2007.

[11] T. Malisiewicz and A.A. Efros, “Improving Spatial Support for
Objects via Multiple Segmentations,” Proc. British Machine Vision
Conf., 2007.

[12] N. Ahuja and S. Todorovic, “Connected Segmentation Tree: A
Joint Representation of Region Layout and Hierarchy,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 2008.

[13] A. Saxena, S.H. Chung, and A.Y. Ng, “3-D Depth Reconstruction
from a Single Still Image,” Int’l J. Computer Vision, vol. 76, pp. 53-
69, 2008.

[14] T. Brox, C. Bregler, and J. Malik, “Large Displacement Optical
Flow,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
2009.
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