Realtime Feedback Tool for Nasal Surgery

Goal:

- 1. Fully functional and preclinically acceptable software that assists surgeons in performing septoplasty, and increases the accuracy of the procedure.
- 2. Informative visualization that improve the learning environment for the attending septoplasty surgery resident.

Project Members:

- Team Members: Michael Norris, Felix Jonathan
- Mentors: Narges Ahmidi, Dr. Masaru Ishii, Dr. Lisa Ishii

Project Relevance

- 1. Improvement to the current teaching process for septoplasty surgery.
- 2. Reducing the amount of errors in septoplasty surgery performed by less experienced surgeon

Technical Summary

The Realtime Feedback Tool for Nasal Surgery is a software system that provides visualization of the predicted line-of-cut for septoplasty to a surgeon. The software that we will develop will allow for the tracking of the line-of-cut of a pair of surgical scissors on a patient's septum.

Realtime Visualization

Deliverables

Minimum Deliverables:

- 1. Training procedure for any model of scissors
- 2. Line of Cut prediction
- 3. Visualizing line of cut prediction and septum surface / phantom
- 4. Septum surface reconstruction by tracing the actual septum
- 5. Documentation for all software and mechanical designs

Expected Deliverables

- 1. Real-time visualization of line of cut prediction on septum surface (> 15 Hz refresh rate)
- 2. Http-based web service to send data from existing software to our project
- 3. Software that validates the accuracy of a cut with respect to the prediction on the phantom

Maximum Deliverables

1. Reasonable accuracy for line of cut prediction (to be updated when we get complete specification of every sensor and tracker we use).

- 2. Septum surface reconstruction by randomized septum surface touching.
- 3. Image projection of anatomy onto surface mesh

Key Dates and Assigned Responsibilities

Rough Outline of Deliverables (dates and assignments in Table 1).

- 1. Training procedure for any model of scissors
 - a. Determine procedure to calibrate scissors pinch point position and orientation relative to EM tracker.
 - b. Verify the training procedure accuracy based on manual measurement of scissors relative to scissors' EM tracker
- 2. Line of Cut prediction
 - a. Simulating cutting plane based on scissor pinch point and EM tracker
 - b. Testing the line of cut prediction on variety of surfaces
- 3. Visualizing line of cut prediction and septum surface
 - a. Dependencies: determine visualization library, #4, #6, #7
 - b. Dependency: Choose visualization library -- Mentor recommends VTK
- 4. Septum surface reconstruction by tracing the actual septum
 - a. Verify the thesis content about PCA code that do the surface reconstruction
 - b. Design protocol to extract the phantom's surface
- 5. Documentation for all software and mechanical designs
- 6. Realtime visualization of line of cut prediction on septum surface (> 15 Hz refresh rate)
 - a. Optimize #3 for speed using C++ threading
- 6. Http-based web service to send data from existing software to our project
 - a. Dependency: acquire existing software for reading EM tracker and reading pose in realtime
- 7. Software that validates the accuracy of a cut with respect to the prediction on the phantom
 - a. Dependency: EM tracker library?, pointer tool for surface reconstruction
 - b. Tracing pointer tool on guideline and using predicted line of cut to cut the surface, and retracing the actual cut to get the accuracy of prediction
- 8. Reasonable accuracy for line of cut prediction (to be updated when we actually get complete specification of every sensor and tracker we use).
 - a. Any improvement possible given the sensor accuracy constraint by minimizing any sources for any loss of accuracy.
 - b. Utilizing filtering algorithm (such as Kalman Filter, Particle Filter) to improve prediction accuracy by reducing sensor related noise
- 9. Septum surface reconstruction by randomized septum surface touching.

Dependencies

- 1. EM Tracker and EM Control Unit -- already available
- 2. Pointer tool for surface reconstruction -- already available
- 3. Access to laboratory environment -- already provided
- 4. Access to rapid prototyping machinery -- will be provided by mentor
- 5. EM Tracker holder -- Expected arrival in March. We have a 3d-Printed prototype curently available that we can use until it arrives
- 6. Surgical Scissors -- already available
- 7. Learning CISST library for variety of application (pivot calibration, 2D-3D registration, visualization, etc.).
- 8. Code for Communicating with EM Tracker and reading pose in realtime -- has been developed, will be available in few days as soon as we ask our mentor.
- 9. Phantom for septal plane -- may use raw chicken, can be purchased with mentor's funds

Management Plan

Task List (Table 1)

	Start	End	Duratio	Predecesso	%	Assigned
Task Name	Date	Date	n	rs	Complete	То
External Dependencies	02/15/16	03/01/16	12d			
EM Trackers and EM Control Unit provided by mentor	02/15/16	02/15/16	1d		100%	
EM Tracker holder provided by mentor, expected arrival in March	03/01/16	03/01/16	1d			
Surgical Scissors provided by mentor	02/15/16	02/15/16	1d		100%	
Access to laboratory environment provided by mentor	02/15/16	02/15/16	1d		100%	
Learning CISST library	02/22/16	02/22/16	1d			
pivot calibration	02/22/16	02/22/16	1d			
2D-3D registration	03/22/16	03/22/16	1d			
Code for Communicating with EM Tracker and reading pose in realtime provided by mentor	02/15/16	02/15/16	1d		100%	

Pointer tool for surface	02/15/16	02/15/16	1d			
reconstruction						
provided by mentor					100%	
Choose Visualization Library (Python or C++)	02/15/16	02/15/16	1d		100%	
Develop Training	02/24/16	04/04/16	29d	20		Felix,Michael
Procedure for using						
Scissors with						
Phantom						
Meet with Surgical team	02/24/16	02/24/16	1d	4	50%	Felix,Michael
to collect requirements						
Develop OR Procedure	02/25/16	03/04/16	7d	13	50%	Felix,Michael
Test line-of-cut	03/22/16	04/04/16	10d	16		Felix,Michael
prediction on phantom						
while following						
procedure						
Line of Cut Prediction		03/21/16	25d	2, 4, 5, 9		
Define Data Format for	02/16/16	02/17/16	2d			Michael N
Storing Scissor Position						
Data and Line of Cut Direction and						
Orientation					100%	
Define Algorithm to	02/16/16	02/28/16	12d		100%	Felix
Predict Cut from EM	02/10/10	02/20/10	120			I GIIX
Sensor and Pose Data					30%	
Create	02/28/16	03/01/16	2d		0070	Felix, Michael
Testing/Evaluation Plan	02/20/10				0%	
Collect Test Datasets	02/28/16	03/01/16	2d	19, 5		Felix,Michael
with phantom					0%	
Iterate Until Completion	03/01/16	03/21/16	21d		0%	
Visualizing Line of	02/16/16	03/21/16	25d	11		
Cut						
Define API of	02/16/16	02/16/16	1d			Michael N
Visualization module					100%	
Develop UI Mockup,	02/16/16	03/01/16	11d			Michael N
Approved by Users					70%	
Visualize Septum	03/02/16	03/21/16	14d	24		Felix
Surface					0%	
Visualize Scissor Icon	03/02/16	03/21/16	14d	24		Michael
on Surface	00/00/40	00/04/40	441		0%	N 41 1 1 1 1 1 1
Visualize Line of Cut	03/02/16	03/21/16	14d	24	0%	Michael N
Septum surface	03/16/16	04/04/16	14d			
reconstruction by						
tracing the actual septum						
Read provided papers	03/16/16	03/16/16	1d			Felix, Michael
Ticad provided papers	03/10/10	03/10/10	Iu			i clix, ivilcitael

Implement Software	03/16/16	03/24/16	7d			Felix, Michael
OR Data-Collection	03/25/16	04/04/16	7d	30		
Procedure						
Develop OR	03/25/16	03/30/16	4d			Felix, Michael
Data-Collection						
Procedure						
Surgeons Agree to	03/31/16	03/31/16	1d	32		
Perform						
Evaluate	04/01/16	04/01/16	1d	33		
Iterate	04/04/16	04/04/16	1d	34		
Documentation for all	02/01/16	04/29/16	65d			
software and						
mechanical designs						
Documentation	02/01/16	04/29/16	65d			Felix, Michael
Real-time	02/16/16	03/25/16	29d	11		
visualization of line of						
cut prediction on						
septum surface						
Receive EM Data from	03/04/16	03/04/16	1d	41		Michael
Http Server						
Optimize to reach > 15	02/16/16	03/25/16	29d			Michael
fps						
Http-Based Web	02/16/16	03/03/16	13d	2, 9		
Service						
Choose Server HTTP	02/16/16	02/19/16	4d			Michael
Framework (C++)					100%	
Choose Client (UI)	02/16/16	02/19/16	4d			Michael
HTTP Framework					100%	
Develop API for passing	02/16/16	02/16/16	1d	2, 9		Michael, Felix
EM data					100%	
Implement Server	02/16/16	03/03/16	13d		0%	Michael, Felix
Implement Client	02/16/16	03/03/16	13d		0%	Michael
Performance Testing	02/16/16	03/03/16	13d		0%	Michael
Scissor cut accuracy	03/22/16	03/29/16	6d	16		
validation						
Collect Requirements	03/22/16	03/29/16	6d			Felix, Michael
Agree on Scissor-cut	03/22/16					
accuracy algorithm with						
mentor						
Implement accuracy	03/22/16					Felix
algorithm						
Septum Surface	03/22/16	04/08/16	14d			
Reconstruction by						
Randomized Surface						
Touching						

Investigate existing mathematical model (already developed) for converting points on the surface to the surface plane	03/22/16	03/24/16	3d		Felix, Michael
Segment points on the surface	03/22/16	04/08/16	14d		Felix, Michael

Scheduled Meetings

- Felix and Michael meet every Tuesday from 5-10pm, Friday from 3-8pm
- Felix and Michael working individually on Satuday from 9am-7pm
- Felix and Michael will meet with Narges 2-3 times a week to track progress and will also have biweekly meeting with all mentors. Dr. Ishii's research group meets on Thursdays at 4:00 every other week. Current meetings with Narges are scheduled on Monday at 3:00 and Thursday at 11:00.
- Felix and Michael will attend pig bone surgery 2-3 times and at least one septoplasty surgery in OR in the entire project timeline

Bookkeeping tools:

- LCSR Gitlab repository for version control and code backup
- Gitlab issue tracker for bug report
- Using the course wiki as a notebook for tracking software architecture, mechanical design, and OR procedures.

Skills

- Felix -- Computer Vision, Robotics, CAD design, machine shop skills, software development on C++ and Python
- Michael -- Development of Visualization / analysis software, realtime software / high performance computing, backend web infrastructure, general software engineering, Computer Science

Reading list

- Ahmidi, N., Poddar, P., Jones, J. D., Vedula, S. S., Ishii, L., Hager, G. D., & Ishii, M. (2015). Automated objective surgical skill assessment in the operating room from unstructured tool motion in septoplasty. *Int J CARS International Journal of Computer Assisted Radiology and Surgery*.
- Radley, G. J., Sama, A., Watson, J., & Harris, R. A. (2009). Characterization, quantification, and replication of human sinus bone for surgery simulation phantoms.
 Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 223(7), 875-887.

- Fong, Y., Giulianotti, P. C., Lewis, J., Koerkamp, B. G., & Reiner, T. (2015). *Imaging and visualization in the modern operating room: A comprehensive guide for physicians*. 17-27, 121-132, 181-191
- D'Ascanio, L., & Manzini, M. (2009). Quick Septoplasty: Surgical Technique and Learning Curve. *Aesth Plast Surg Aesthetic Plastic Surgery*, *33*(6), 814-818.