

Checkpoint Presentation: Computer-Guided X-Ray C-arm Positioning

03/24/16

Group 5: Ju Young Ahn, Seung Wook Lee

Mentor: Dr. Jeff Siewerdsen

Dr. Matthew Jacobson, Dr. Tharindu da Silva, Dr. Joseph Goerres

Project Background: Motivation

C-arm: An X-ray imaging device with flexible positioning of X-ray source.

- Widely used for diagnostic imaging or surgical procedures in many areas including orthopedic surgeries.
- Multiple degrees of freedom (DOF) of the arm with angular and orbital movements allow guidance and localization for surgeons to set an optimal viewpoint

Challenge: "Fluoro-hunting"

- Surgeons should take multiple to set an optimal fluoroscopic view.
- Time-consuming, more radiation exposure to both patients and physicians, physically cumbersome, safety issues.

http://www.simeks.com.tr/en/portfolio-item/siemens-cios-alpha/

Project Background: Solution

Goals: Develop user-friendly interfaces to find an optimal C-arm position with a digitally reconstructed radiograph (DRR) generated from preoperative 3D CT data.

Advantages:

- Less time consuming
- Less radiation exposure for both physicians and patients
- Less user variability, more consistency

2 Approaches: Computer interface / Physical interface

Project Background: 2 Approaches (CI/PI)

Original Deliverables

MIN

- Registration of C-arm, patient, and patient CT data with an optical tracker/markers
 - Verification: measure Target Registration Error (TRE)
- Modify existing DRR generation module to define source position i/t/o orbital/angular position

EXP

- Physical Interface: acquire pyhsical C-arm position and display DRR
- Computer Interface: define virtual C-arm position and display DRR
 - Validation measure Projection Distance Error (PDE) between generated DRR and actual fluoroscopic image

MAX

- Physical/Computer Interfaces:
 Encoder-based C-arm positioning, Pt-CT reg. w/ 3D-2D image registration
- Computer Interface: Drive the C-arm to preferred position with SITA interface
 - Verification: Measure accuracy of C-Arm positioning, TRE.

DRR genereration based on C-arm source position

446 CIS II Spring 2016

DRR genereration based on C-arm source position

Where

Background

$$T_w^d = \begin{bmatrix} R_d & p_d \\ 0 & 1 \end{bmatrix}$$

Source is defined in detector coordinate as

$$T_d^s = T_w^{d-1} T_w^s = \begin{bmatrix} I & p_s \\ 0 & 1 \end{bmatrix}$$

Where $p_s = [u_0 \ v_0 \ SDD]$

Then projection matrix P_i defined as:

$$P_i = I_i \cdot T_s^w$$

Where intrinsic/extrinsic matrices I_i and T_s^w are:

$$I_{i} = \begin{bmatrix} -SDD & 0 & u_{0} & 0 \\ 0 & -SDD & v_{0} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
$$T_{s}^{w} = \left(T_{w}^{d} T_{d}^{s}\right)^{-1} = \begin{bmatrix} R_{d} & R_{d} \cdot p_{s} + p_{d} \\ 0 & 1 \end{bmatrix}^{-1}$$

$$x_A = T_A^B x_B$$

Registration

Geometric Calibration (C-arm) Coordinates	Optical Coordinate	CT Coordinate
· C-arm center of rotation · Source Position	· Patient fiducials	· Preoperative 3D CT data

C-arm Registration

 $F_{Carm}^{Optical}$: C arm $3D \rightarrow Optical$ 3D

Pt.-CT Registration

 $F_{Optical}^{CT} \colon Optical \ 3D \ \rightarrow CT \ 3D$

Registration

Geometric Calibration (C-arm) Coordinates	Optical Coordinate	CT Coordinate
· C-arm center of rotation · Source Position	· Patient fiducials	· Preoperative 3D CT data

C-arm Registration

 $F_{Carm}^{Optical}$: $C \ arm \ 3D \rightarrow Optical \ 3D$

Pt.-CT Registration

 $F_{Optical}^{CT}$: Optical 3D $\rightarrow CT$ 3D

Patient-CT Registration

- Tracked phantom's 10 fiducial points, already known in 3D CT data, using an optical tracker.
- Utilized TREK's built-in fiducial registration, existing software from Dr. Siewerdsen's Lab
- Horn's method with Quarternion Technique to peform fiducial registration
- Obtained Phantom to CT transformation matrix defined by fiducial registration using an optical tracker.

Patient-CT Registration: Verification

The registration process validated using Fiducal Registration Error (FRE)

Transformation obated from fiducial registration process registers CT and Phantom fiducials with mean FRE = 0.77 mm.

Other validation methods such as Target Registration Error (TRE) should also be explored

Registration

Geometric Calibration (C-arm) Coordinates	Optical Coordinate	CT Coordinate
· C-arm center of rotation · Source Position	· Patient fiducials	· Preoperative 3D CT data

C-arm Registration

 $F_{Carm}^{Optical}$: $C \ arm \ 3D \rightarrow Optical \ 3D$

Pt.-CT Registration

 $F_{Optical}^{CT}$: Optical 3D $\rightarrow CT$ 3D

C-arm Registration

Original Plan: use optical marker attached on the C-arm

Issues:

- Limited field of view of optical tracker
- Accurate location of X-ray source

Encoder: provides orbital/angular position, no FOV issues. Could locate sources by calibration

Change of plan:

- Use encoder-based approach (originally a maximum deliverable)
- Take multiple shots of multi-modal markers in different angles, acquire 3D position of the markers in optical/C-arm coordinate
- Calibration step required in prior to registration

Project Timeline

C-arm Registration: Calibration

9 DoF 3D-2D registration used to solve for projection matrix.

Images of calibration object taken from angles i. Then projection matrix P_i in the given angle i satisfies

$$X_{2d}^{i} = P_i \cdot X_{3d}$$

To solve for P_i , we set

Background

$$z_i = P_i \cdot X_{3d}$$

Where
$$z_i$$
 is a 1x3 matrix defined as $X_{2d}^i = \begin{bmatrix} z_1/z_3 \\ z_2/z_3 \end{bmatrix}$

Then, we solve for
$$P_i = \begin{bmatrix} -p_{s,z} & 0 & p_{s,x} \\ 0 & -p_{s,z} & p_{s,y} \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} R_d & R_d p_s + p_d \\ 0 & 1 \end{bmatrix}^{-1}$$
 which has nine parameters:

$$\left[\underbrace{p_{d,x} \quad p_{d,y} \quad p_{d,z}}_{ \text{detector position}} \quad \underbrace{\theta_{d,x} \quad \theta_{d,y} \quad \theta_{d,z}}_{ \text{detector rotation}} \quad \underbrace{p_{s,x} \quad p_{s,y} \quad p_{s,z}}_{ \text{source position}} \right]$$

Source position p_s^i for angles *i* could be computed from the projection matrix.

Center of rotation acquired by fitting a circle on acquired source positions.

C-arm Registration

COR/projection matrices in multiple angles known from calibration

- 1. Acquire 2D projections of optical markers from varying angles
- 2. Compute marker position (centroid) in each projection
- 3. Triangulate 3D position of the markers in C-arm coordinate
- 4. Obtain optical positions of the markers
- 5. Define $T_{Carm}^{optical}$: 3D C arm \rightarrow 3D optical using marker based on 3, 4

6. Where
$$X_{Carm}$$
 is source position in C-arm coordinate $X_{optical} = T_{Carm}^{optical} \cdot X_{Carm}$ $X_{CT} = T_{optical}^{CT} \cdot X_{optical}$

Accurate registration in simulation Next: work with actual data.

Updated Delilverables

Deliverables	Status	Verification	
Minimum deliverable]
Registration: CT-Phantom	Completed	In progress	1
Registration: C-arm (Encoder-based)	Completed	In progress	◀
Modify existing DRR generation to describe source position in orbital/angular position	Completed	~	
Expected deliverable (expected starting date: 03/28/16)			
Physical Interface, capable of acquisition of pyhsical C-arm position and display of DRR	Not yet started	Not yet started	
Computer Interface, capable of specifying virtual C-arm position and displaying DRR	Not yet started	Not yet started	
Maximum deliverable			
Pt-CT reg. w/ 3D-2D image registration	Not yet started	Not yet started	◀
Computer Interface: Drive the C-arm to preferred position with SITA interface	Not yet started	Not yet started	

Dependencies

- A. Equipment Accessibility resolved
 - a. Access to C-arm, optical tracker, optical markers, and 3D phantoms
- B. Software/Existing tools resolved
 - a. Necessary softwares for modules, 3D CT data of phantoms.
- C. Version Control/Documentation resolved
- D. Safety Training In progress (Completed by end of this week)
- E. Schedule with mentors resolved
- F. Access to the lab resolved

Project Timeline (before)

Date by		Feb				Ma	arch			May				
Tasks	8	15	22	29	7	14	21	28	4	11	18	25	2	5
Meeting with Mentors		8												
Get Resources, finish setup														
Minimum Deliverables	8													
Get familiar w/ existing softwares					1									
Implement angualr/orbital source movement														
Define dectector based on source														
Apply physical constraints of C-arm movement														
Registration - CT/C-arm, Pt-CT														
Verify registration with TRE														
Finalize UI & FluoroSim module														
Verify compliance to the physical constrain	s													
Expected Deliverables														
Develop Physical Interface														
Acquisition of real-time source position														
Verification: Compare X ray Image with DR	R													
Develop Computer Interface														
Digital manipulation of source position														
Verification: Compare X ray Image with DR	R													
Maximum Deliverable	1 - 6													
Drive C-arm using SITA (Computer Interface)														
Registration:														
Encoder-based C-arm registration														
3D-2D image patient registration														100
Verification														

Project Timeline (Updated)

Date by:		Feb March							May					
Tasks	8	15	22	29	7	14	21	28	4	11	18	25	2	5
Meeting with Mentors														
Get Resources, finish setup														
Minimum Deliverables														
Get familiar w/ existing softwares														
Implement angualr/orbital source movement														
Define dectector based on source								\rightarrow						
Finalize DRR generation module														
Registration - CT/C-arm, Pt-CT														
Verification of Pt-CT registration														
Verification of C-arm registration									-					
Expected Deliverables														
Develop Physical Interface														
Acquisition of real-time source position														
Verification: Compare X ray Image with DRR														
Develop Computer Interface														
Digital manipulation of source position														
Verification: Compare X ray Image with DRR														
Maximum Deliverable														
Drive C-arm using SITA (Computer Interface)														Г
Registration:														
Encoder-based C-arm registration								•						
3D-2D image patient registration														
Verification														

Upcoming Milestones

- Physical Interface
 - \circ Build a bridge so physical movement of C-arm/Source can be tracked and inputted to the module in real-time (by $04/04/16 \rightarrow 04/11/16$)
 - \circ Acquire X-ray image of preferred view, error check with generated DRR (Validation) (by $04/11/16 \rightarrow 04/18/16$)
- Computer Interface
 - Read C-arm/Source position with an optimal fluoroscopic preview (by $\frac{04/18/16}{0.000} \rightarrow \frac{04/25/16}{0.000}$)
 - Verification process by comparing a DRR preview to an acquired X-ray image (by 04/25/16)
- Advanced Features (MAX)
 - Using SITA interface, allow computer interface to drive C-arm to a desired position. (by 05/02/16)
 - Encoder-based C-arm position measurement (by $\frac{05}{02}/16 \rightarrow 03/28/16$)
 - Pt.-CT registration via 3D-2D registration with 2 X-ray shots (by 05/05/16)
 - Verification process by comparing a DRR preview to an acquired X-ray image (by 05/05/16)

Questions?

