Source and Detector Transformation matrices in TREK FluoroSimulator module.

Seung Wook Lee

1. Source Transform

The purpose of source transform is to define source position in world coordinate. The transform is composed of three components: orientation, orbital rotation, and angular rotation. Therefore, the transformation could be defined as:

$$
T_{S}=O R_{a}(\alpha) R_{o}(\omega)
$$

where O represents an orientation, R_{o} represents orbital rotation, and R_{a} represents angular rotation. Under an assumption that original source position lies on an x-axis, R_{o} rotates the source about y -axis for an angle ω, and R_{a} rotates the position about an axis z^{\prime}, which is a rotated z-axis, for an angle α. Figure 1 describes a view in a direction of a y-axis. In figure 2 , axis z ' is defined as a line passing origin and a point $(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\sin \omega, 0, \cos \omega)$, where ω is an orbital position of C -arm.

Figure 1. Schematic for a rotated z -axis
R_{a} and R_{o} are therefore rotation matrix with angle α and ω about the axis $(0,1,0)$ and $(\sin \omega, 0, \cos \omega)$. These rotations, however, are valid only if the original source position lies on the x -z plane. To compensate this, there is an orientation matrix O that rotates these transformations to align the transformation with respect to a plane with zero angular position.

2. Detector Transformation

Detector transformation is similar to the source transformation. On an X-ray C-arm, detector and source has a fixed source-to-detector distance (SDD) and positioned at the opposite side. Therefore, the detector transformation rotates could be described as a source transformation with additional $\pi / 2$ rotation in either angular or orbital direction. On our system, additional $\pi / 2$ is added in angular position to define the source position. Therefore, source transform TD is:

$$
T_{D}=O R_{a}\left(\alpha+\frac{\pi}{2}\right) R_{o}(\omega)
$$

